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a b s t r a c t

The conventional multivariate statistical process control (MSPC) methods in general quantify the distance
between the new sample and the modelling samples for fault detection and diagnosis, which, however, do not
check the changes of data distribution as long as monitoring statistics stay inside normal region enclosed by
control limit and thus are not sensitive to incipient changes. In the present work, a sparse dissimilarity (SDISSIM)
algorithm is developed which can isolate the incipient abnormal variables that change the data distribution
structure and does not need any priori fault knowledge. First, the distribution dissimilarity is decomposed deeply
and significant dissimilarity is extracted to integrate the critical difference of variable covariance structure
between the reference normal operation distribution and the actual distribution. Second, a sparse regression-
based optimization problem is formulated to isolate abnormal variables associated with changes of distribution
structure. Sparse coefficients are obtained with only a small fraction of variables’ coefficients nonzeros, pointing
to abnormal variables. As illustrations, SDISSIM is applied to both simulated and real industrial process data
with encouraging results to figure out the slight distortions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modern industrial processes have shown an urgent demand for
keeping process safety and improving product quality. Efficient process
monitoring has been an important issue and is drawing increasing
attentions with studies of fault detection and diagnosis (Cauffriez,
Grondel, & Loslever, 2016; Chiang, Russell, & Braatz, 2000; Kariwala,
Odiowei, Cao, & Chen, 2010; Kerkhof, Vanlaer, Gins, & Impe, 2013;
Portnoy, Melendez, & Pinzon, 2016; Tong, El-Farra, Palazoglu, & Yan,
2014; Undey & Cinar, 2002; Yu & Rashid, 2013; Zhao, Sun, & Gao,
2012; Zhao, Yao, Gao, & Wang, 2010; Zhang, Zhao, Wang, & Wang,
2017). Among them, principal component analysis (PCA) (Jackson,
2005; Wold, Esbensen, & Geladi, 1987) and partial least squares (PLS)
(Burnham, Viveros, & MacGregor, 1996; Dayal & MacGregor, 1997)
as the typical representation of multivariate statistical process control
(MSPC) methods have made an impact since the last three decades
because their derivation requires a minimal a priori knowledge about
process physics. They in general use distance-based statistics and the
job is to timely detect any deviation from normal or ‘‘in-control’’ region
that has been defined to accommodate the acceptable variations. It is
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extremely important to detect the early occurrence of a small process
deviation before the serious failure of the overall process so that it can
be handled to prevent undesired consequences in which fault isolation
is a main function.

Fault detection and isolation are two essential steps as stated
by Chiang, Kotanchek, and Kordon (2004). For fault detection and
isolation task, it requires that information about the normal (fault-
free) behaviour should be available and the main principle behind is
to compare system’s actual behaviour against its nominal one to check
whether the consistency stays and what distorts the consistency. The
fault isolation follows the fault detection task to identify the variables
primarily responsible for the disturbance, making the subsequent step
of root cause diagnosis easier. Data-driven fault diagnosis methods are
reviewed in Isermann (1997, 2006); MacGregor and Cinar (2012); Qin
(2012); Russell and Braatz (2001); Venkatasubramanian, Rengaswamy,
Kavuri, and Yin (2003); and Yin, Ding, Xie, and Luo (2014); and various
methods are compared. In general, the fault isolation methods can be
classified into two typical classes. One class is the approach that does not
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need any historical fault information. The typical representation is con-
tribution plot (Alcala & Qin, 2009; Li, Alcala, Qin, & Zhou, 2011; Miller,
Swanson, & Heckler, 1998; Westerhuis, Gurden, & Smilde, 2000) that
is a standard tool to isolate faulty variables without a priori knowledge
by determining the contribution of each variable to the fault detection
statistics. Despite of its simplicity, however, the principle may not be
correct because it assumes that the fault-free variables after fault occurs
follows the same distribution as that under normal operating conditions.
The other class is the approach that requires exploration of historical
fault data for extraction of fault feature. The typical representation is
discriminant analysis based classification method (Dunia & Qin, 1998)
and reconstruction based fault diagnosis (He, Qin, & Wang, 2005;
Zhao & Sun, 2013) method. Zhao and Sun (2013) proposed the idea
of relative changes to improve the fault reconstruction model and thus
remove out-of-control monitoring statistics more efficiently. Instead of
directly modelling the fault data, the relative changes from normal to
fault condition are analysed along monitoring directions derived from
normal data so that the significant directions responsible for out-of-
control monitoring statistics are extracted to reconstruct disturbances.
Further, faulty variable selection strategy (Zhao & Gao, 2017; Zhao &
Wang, 2016) has been developed in combination with reconstruction
technique for online fault diagnosis, in which, the key faulty variables
can be isolated to better describe fault characteristics and thus improve
fault diagnosis performance. However, sufficient historical fault data
have served as a basis for fault reconstruction and classification, which,
however, may be difficult to be obtained in practice. Besides, both of
them may have difficulty handling unknown disturbances that are not
covered by historical fault data.

The above fault diagnosis methods in general calculate the distance
index to evaluate the derivations from the normal condition. Therefore,
they may not always function well and in particular they may not be
sensitive to incipient changes in the variable covariance structure or
changes in the geometry of the underlying distribution decomposition.
Recently, some work have noticed this problem and been presented
to address this issue. Kano, Hasebe, Hashimoto, and Ohno (2001a, b)
calculated a new index to evaluate the changes in the direction of each
principal component. However, it cannot detect changes in the process
variance. Kruger, Kumar, and Littler (2007) addressed this issue by
incorporating the local approach (Basseville, 1998) into the multivari-
ate statistical monitoring framework and constructed two univariate
statistics to detect changes in the directions of the eigenvectors that
span the model plane and in the eigenvalues that represent process
variance. However, Kruger et al. only simply plotted the difference of
covariance between the process reference data and one fault condition
and used departures of elements to indicate which variables were mostly
affected by a fault condition. Kano, Hasebe, Hashimoto, and Ohno
(2002) proposed a dissimilarity index, referred to as DISSIM method,
to quantitatively evaluate the distribution difference between normal
condition and fault condition. DISSIM method is based on the idea
that a change of operating condition can be detected by monitoring
the distribution of time-series data covering both distribution directions
and variances, which reflects the corresponding operating condition.
One pattern recognition algorithm, Karhunen–Loeve (KL) expansion
(Fukunaga & Koontz, 1970), was introduced to make transformation so
that the concerned two data sets shared the same eigenvectors, i.e., the
same directions. Thus the distribution difference can be simply reflected
by the difference between eigenvalues, i.e., the process variances. It
has been generalized for fault detection of batch processes (Zhao,
Wang, & Jia, 2007) and the nonlinear expansion of DISSIM method was
also reported by Zhao, Wang, and Zhang (2009) for fault detection of
nonlinear processes. However, although the DISSIM method has been
successfully used for detection of incipient faults, fault isolation of the
abnormal variables that distort the variable covariance structure has
not been well addressed. Like the conventional contribution plot, a
contribution of each process variable to the dissimilarity index was
calculated by Kano et al. (2001a, b) to simply identifying the abnormal
variables, which thus has the same problem as contribution plot.

This paper proposes a sparse dissimilarity (SDISSIM) algorithm
for online incipient fault diagnosis without priori fault information.
Considering the power of DISSIM algorithm for distribution monitoring,
it is used as the basic analysis algebra from which the faulty variable
isolation strategy is developed that incorporates the DISSIM approach
into fault diagnosis framework. First, it gives rise to further decomposi-
tion of dissimilarity directions which can integrate the major changes in
the data distribution structure that are mostly affected by an incipient
fault. Second, a sparse regression-type optimization is formulated to
obtain a compact set of potential faulty variables for the purpose of
isolating disturbed variables that have caused changes in the variable
covariance structure resulting from the presence of an incipient fault.
The paper demonstrates that the new method is more sensitive to
isolation of incipient faulty variables that are responsible for distortion
of the underlying covariance structure.

The major contribution is summarized as below:

(1) The proposed method is for incipient fault diagnosis from the
perspective of changes of process distribution.

(2) A sparse DISSIM algorithm is formulated which can automati-
cally online isolate multiple incipient fault variables that cause
changes of process distribution without any priori fault informa-
tion.

(3) A judgement strategy is developed to initially determine whether
all possible faulty variables that are responsible for the concerned
incipient fault have been online identified without having trouble
recalculating the monitoring statistics.

2. DISSIM revisit and motivation

DISSIM method (Kano et al., 2002) can quantify the distribution
difference between two data sets based on the index of dissimilarity
analysis which incorporates a classification method based on Karhunen–
Loeve (KL) expansion (Fukunaga & Koontz, 1970) into the MSPC
framework. The analysis subjects are two data sets, which share the
same number of variables but have different number of samples. One
data set is referred to be the reference which is normalized to have
zero-mean and unit-variance. And the normalization information can
then be employed to deal with the other data set, which thus covers
the distribution information departing from the reference one. The
distribution difference between the two data sets is evaluated for
modelling. The details of DISSIM algorithm can refer to the work by
Kano et al. (2002). Here, their modelling procedure is simply outlined
as follows.

(1) Calculate the covariance matrix of the mixture of two data sets.
(2) Perform eigenvalue decomposition on the covariance matrix.
(3) Transform the original data matrices by the eigenvectors ob-

tained from Step (2).
(4) Calculate the covariance matrices of the transformed data matri-

ces.
(5) Conduct eigenvalue decomposition on each transformed covari-

ance matrix.
(6) Calculate the index 𝐷 to quantify the distribution dissimilarity

and determine the control limit.

For on-line fault detection, the current data matrix representing the
actual operating condition is updated continuously by moving the time-
window forward step-wise, and it is normalized using the mean and
the variance information obtained from the reference data. Then, the
dissimilarity index 𝐷 is calculated to evaluate the distribution difference
between the actual and the reference data sets. If the index is outside
the control limit, the current operation condition is judged to present
different covariance structure from the reference one.

By DISSIM algorithm, it first transforms the concerned two data sets
resulting in the same eigenvectors, i.e., the same distribution directions.
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