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a b s t r a c t

The paper describes some practical control problems of technological and production processes as nonlinear
distributed parameter systems. These are solved based on advanced numerical modeling in virtual software
environments offered for the numerical dynamic analysis of technological and production processes with co-
simulations. The controlled systems are interpreted as nonlinear lumped input and distributed parameter output
systems. Synthesis of control in space relation is solved by approximation methods in temporal relation by
methods of control of lumped parameter systems. Some results are demonstrated by the control of the secondary
cooling in the continuous casting of steel, based on a software sensor. Furthermore, the control of a casting die
preheating process is introduced in this framework using a programmable logic controller (PLC).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Technological and production (TaP) processes often have a character
of a distributed parameter system (DPS). The handling of such systems
has a long history in control engineering, where the prevailing technical
discussion is often on the control of systems governed by partial
differential equations (PDE).

The design of control systems of DPS is often based on the early lump-
ing approach in engineering practice. This means, that the process model
is approximated prior to the control design using, e.g., finite-difference
or finite-element techniques, proper orthogonal decomposition or the
weighted-residual method. As a result, well-developed methods from
linear and nonlinear finite-dimensional control theory can be applied
for control and observer design; usually in the form of MIMO systems,
see e.g. Jadachowski, Steinboeck, and Kugi (2016), Steinboeck, Wild,
and Kugi (2013). In the late lumping approach, the control and observer
design is directly based on the PDE description of the system dynamics.
The results obtained this way are then adjusted for implementation into
engineering practice (Jacob & Zwart, 2012; Meurer, 2013).

Thanks to the development of information technology, engineering
practice frequently uses software products for the numerical analysis
of the dynamics of various technical objects. These analyses are funda-
mentally based on the numerical solutions of the underlying nonlinear
partial differential equations. The tasks in numerical analysis usually

* Corresponding author.
E-mail address: gabriel.hulko@stuba.sk (G. Hulkó).

involve the investigation of time–spatial responses that are subject to
manipulated input variables of the lumped character. A general lumped
input and distributed parameter output system (LDS) can be formulated
based on the results of the aforementioned analyses, in order to solve
the control problems of TaP processes as DPS. The implementation stage
then utilizes the lumping approach.

The underlying idea of this concept was published in the article
by Hulkó et al. (2009) and successfully applied in the fields of energy
systems (Hulkó, Rohal’-Ilkiv, Noga, & Lipár, 2012), extrusion of plastics
(Lipár, Noga, & Hulkó, 2013), induction heating (Kapusta, Camber, &
Hulkó, 2013), metallurgy (Ondrejkovič, Buček, Noga, & Hulkó, 2013;
Ondrejkovič, Pyszko, & Hulkó, 2015) as well as in groundwater remedi-
ation control (Mendel, Kovács, & Hulkó, 2015). The present article that
is based on the extended conference paper (Hulkó et al., 2016), this
approach is further elaborated and generalized to the control of TaP
processes as DPS.

Distributed outputs are sometimes at our disposal on the whole
definition domain of the controlled system; however, often there are
difficulties with the reliable distributed sensing of outputs. In these
cases, control synthesis is solved by a software sensor, where modeled
manipulated outputs are available in all locations of the definition
domain. Frequently, technological and production processes take place
in closed structures, isolated from external disturbances, where the
outputs are measured only at selected locations of the definition domain.
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Fig. 2.1. Nonlinear lumped input and distributed parameter output system — NLDS.

Here, the aim of the control synthesis is to ensure the minimization of
the distributed control error, based on measurements only in selected
locations. Technological and production processes operate very often
in linearized surroundings of steady state regimes. At transitions be-
tween these steady state regimes, the control problems are solved by
the segmentation of the nonlinear transition dynamics into linearized
segments. In the linearized surroundings of given steady state regimes
dynamics of controlled systems is decomposed into temporal and spa-
tial components. Control synthesis in the spatial relation is solved as
approximation problem. For control synthesis in the temporal domain
methods of lumped parameter systems control are used.

Some results of this approach will be demonstrated by the problem
of controlling the secondary cooling in continuous casting of steel
(Petrus, Zheng, Zhou, Thomas, & Bentsman, 2010; Mauder, Šandera,
& Štetina, 2015; Hulkó et al., 2016). Furthermore, the casting die
preheating process, using the framework introduced above, will be
controlled by a programmable logic controller (PLC) (Yang et al., 2006;
Belavý et al., 2012). The controller featuring a software sensor will
use a Kalman filter-based estimation to provide state estimates for
a constrained model predictive controllers (MPC). The demonstration
example for the casting die preheater solves temporal feedback synthesis
by robust PI controllers. Due to the nonlinear character of controlled
systems, nonlinear dynamics will be turned into linearized segments.
At solution of these control problems co-simulations of virtual software
environments (ProCAST, 2010; COMSOL, 2012) and MATLAB (2014)
are used.

2. Basic dynamical relations

Technological and production processes (TaP) as distributed param-
eter systems (DPS) between lumped manipulatable quantities

{

𝑈𝑖 (𝑡)
}

𝑖
and distributed outputs 𝑌𝑁(𝒙, 𝑡) actually represent nonlinear lumped
input and distributed parameter output systems (NLDS), Fig. 2.1. Let us
consider step changes of manipulatable input quantities

{

𝑈𝑖 (𝑡)
}

𝑖 in the
linearized surroundings of the chosen steady state of the NLDS. Here
for simplicity the distribution of NLDS is given on the one-dimensional
interval [0, 𝐿], but all results are valid also for 3D. Responses can be
considered as discrete distributed parameter transient characteristics
with a unit sampling period

{

𝐻𝑖(𝑥, 𝑘)
}

𝑖, Fig. 2.2.
The distributed parameter impulse characteristics are given as sub-

tractions of the shifted transient characteristics {𝐻𝑖(𝑥, 𝑘) = 𝐻𝑖(𝑥, 𝑘)−
𝐻𝑖(𝑥, 𝑘 − 1)}𝑖,𝑘.

Then linear discrete convolution model with lumped inputs
{

𝑈𝑖 (𝑘)
}

𝑖
and distributed parameter output 𝑌 (𝑥, 𝑘) gives linearized part of nonlin-
ear dynamics of NLDS along with particular outputs

{

𝑌𝑖(𝒙, 𝑘)
}

𝑖 in the
form

𝑌 (𝑥, 𝑘) =
𝑛
∑

𝑖=1
𝑌𝑖(𝑥, 𝑘) =

𝑛
∑

𝑖=1

𝑘
∑

𝑞=0
𝐻𝑖(𝑥, 𝑘 − 𝑞)𝑈𝑖(𝑞) (2.1)

which can be interpreted as linear discrete lumped input and distributed
parameter output system with zero order hold units — HLDS, Fig. 2.3.

Inputs
{

𝑈𝑖 (𝑘)
}

𝑖 act in the locations
{

𝑥𝑖
}

𝑖 of the definition domain
of HLDS and generate distributed transient characteristics. In order to
simplify the explanation, let us consider in the following that distributed
transient characteristics in the steady state

{

𝐻𝑖 (𝑥,∞)
}

𝑖 reach their

Fig. 2.2. i-th distributed parameter step response𝐻𝐻𝑖(𝑥, 𝑘) with reduced profiles
{

𝐻𝐻𝑅𝑖(𝑥, 𝑘)
}

𝑘.

Fig. 2.3. Discrete linear HLDS with zero order holds.

maximal amplitudes in locations
{

𝑥𝑖
}

𝑖:
{

𝐻𝑖
(

𝑥𝑖,∞
)}

𝑖 , Fig. 2.2. More-
over, let us introduce the reduced courses of these characteristics in
steady state as
{

𝐻𝑅𝑖(𝑥,∞) = 𝐻𝑖(𝑥,∞)∕𝐻𝑖(𝑥𝑖,∞)
}

𝑖 (2.2)

for
{

𝐻𝑖
(

𝑥𝑖,∞
)

≠ 0
}

𝑖
Similarly we can generate reduced courses of particular distributed

output quantities
{

𝑌 𝑅𝑖(𝑥, 𝑘) = 𝑌𝑖(𝑥, 𝑘)∕𝑌𝑖(𝑥𝑖, 𝑘)
}

𝑖,𝑘 (2.3)

for
{

𝑌𝑖
(

𝑥𝑖, 𝑘
)

≠ 0
}

𝑖,𝑘. Then

𝑌 (𝑥, 𝑘) =
∑

𝑖
𝑌𝑖 (𝑥, 𝑘) =

∑

𝑖
𝑌 𝑅𝑖 (𝑥, 𝑘) 𝑌𝑖

(

𝑥𝑖, 𝑘
)

. (2.4)

Furthermore, for 𝑘 → ∞ the courses
{

𝑌 𝑅𝑖 (𝑥, 𝑘)
}

𝑖,𝑘 will converge to
{

𝐻𝑅𝑖 (𝑥,∞)
}

𝑖, because
{

𝑌 𝑅𝑖 (𝑥,∞) = 𝑌𝑖 (𝑥,∞)∕𝑌𝑖
(

𝑥𝑖,∞
)

= 𝑈𝑖 (∞)𝐻𝑖 (𝑥,∞)∕𝑈𝑖 (∞)𝐻𝑖
(

𝑥𝑖,∞
)

= 𝐻𝑅𝑖
(

𝑥𝑖,∞
)

}

𝑖

. (2.5)

Moreover, according to (2.4) in locations
{

𝑥𝑖
}

𝑖 we will have the
following relation:
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(2.6)

that is obtained by simple breakdown of previous results. This can be
expressed in the following abbreviated form
{

𝑌
(

𝑥𝑖, 𝑘
)}

= 𝒀 𝑹𝑖
(

𝑥𝑖, 𝑘
) {

𝑌𝑖
(

𝑥𝑖, 𝑘
)}

(2.7)
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