Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Nonlinear model predictive control of a batch fluidized bed dryer for pharmaceutical particles

Francis Gagnon^a, André Desbiens^{a,*}, Éric Poulin^a, Pierre-Philippe Lapointe-Garant^b, Jean-Sébastien Simard^b

^a LOOP, Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada G1V 0A6
^b Process Analytical Science Group, Global Manufacturing Services, Pfizer, Montréal, Québec, Canada H4R 1J6

ARTICLE INFO

Keywords: Nonlinear model predictive control Phenomenological model Moving-horizon estimation Batch fluidized bed dryer Near-infrared spectroscopy

ABSTRACT

The availability of reliable online moisture content measurements exploiting near-infrared (NIR) spectroscopy and chemometric tools allows the application of online control strategies to a wide range of drying processes in the pharmaceutical industry. In this paper, drying of particles with a pilot-scale batch fluidized bed dryer (FBD) is studied using a in-line NIR probe. A consolidated phenomenological state-space model of an FBD based on mass and energy balances is calibrated applying a nonlinear least-square identification to experimental data (grey-box modeling). Then, relying on the calibrated model, a nonlinear model predictive controller and a moving horizon state estimator are designed. The objective is to reach a specific particle moisture content setpoint at the end of the drying batch while decreasing cycle time and limiting particle temperature. A penalty term on the energy consumption can also be added to the usual tracking control cost function. Compared to a typical FBD operation in industry (mostly open-loop), it is shown that the drying time and the energy consumption can be efficiently managed on the pilot-scale process while limiting various operation problems like under drying, over drying, or particles overheating.

1. Introduction

Because of the difficulty to get some reliable in-line measurements and the regulatory environment in the pharmaceutical industry, manufacturing in this field is not deploying automatic and real-time optimization systems as fast as other sectors (US Food & Drug Administration, 2004; McKenzie, Kiang, Tom, Rubin, & Futran, 2006). The implementation of in-line process sensors would certainly contribute to a better understanding of the systems. Afterward, model predictive control and real-time optimization would surely improve quality control and performance of the manufacturing processes. The wet granulation process, which involves powder wetting and drying steps to create appropriate granules, is an interesting candidate for those improvements.

The fluidization of solid particles is widely used in the pharmaceutical industry for drying wet granules. Because of high thermal diffusivities and good mixing properties, the batch fluidized bed dryer (FBD) is an efficient option in terms of cycle time and drying uniformity (Kunii & Levenspiel, 1991). However, in most industrial applications, they are still operated without feedback using fixed batch times and inlet air conditions (Mujumdar, 2014). This can lead to multiple problems like under drying or over drying and particle overheating. During the batch, particle overheating can degrade products that are sensitive to high temperatures. Also, a hot product at the end forces operators to wait for a cooling period before manipulating the dried granules. Besides those problems, it may not be the fastest and the most energy-efficient solution. All those issues raised interests in FBD monitoring with in-line analytical instruments and advanced process control strategies (Briens & Bojorra, 2010).

Since most batch processes are highly nonlinear due to their usual lack of steady states and their common unidirectional behavior (Bonvin, Srinivasan, and & Hunkeler, 2006; Nagy & Braatz, 2003), nonlinear models and control strategies are more appropriate. More specifically for batch fluidized bed drying, the way the manipulated variables (inlet air flow rate and temperature) are varied influences the rate of drying but not the final particle moisture content, which is fixed by the inlet air humidity. Also, following positive or negative variations of the manipulated variables and from its initial value, the particle moisture content can only decrease until the final equilibrium point is reached. Finally, FBD exhibits two different drying dynamics through the batch defined as the constant rate and the falling rate periods (Li & Duncan, 2008a). The dynamics of the particle temperature are also very distinct during these two phases.

* Corresponding author. E-mail address: andre.desbiens@gel.ulaval.ca (A. Desbiens).

http://dx.doi.org/10.1016/j.conengprac.2017.04.009

Received 17 August 2016; Received in revised form 13 April 2017; Accepted 15 April 2017 0967-0661/ © 2017 Elsevier Ltd. All rights reserved.

	Nomencl	ature	Z	elevation, m
	A_f	inlet blower speed. %	Greek sy	mbols
	A _b	inlet heating power. %		
	a	specific heat-transfer surface of driver wall m^{-1}	α_{m}	relative tolerance on particl
	c	specific heat of drying gas $J kg^{-1} K^{-1}$	χp	end-of-batch detection dim
	c_g	specific heat of dry particles $L k a^{-1} K^{-1}$	V	moisture content (dry basis
	c_p	specific heat of dry particles, 5 Kg^{-1} K	X 2/*	moisture content of drying
	c_w	specific heat of inquite water, 5 Kg^{-1} K	λ_p	infoisture content of drying
	c_{wv}	diameter of had column m		basis), dimensionless
	D_c	diameter of bed column, m	χ_{pc}	particle critical moisture con
	D_g	molecular diffusion coefficient of drying gas, m ⁻ s ⁻	δ_b	fraction of fluidized bed con
	a_p	particle diameter, m		less
	d_{b0}	bubble minimal diameter, m	γ	heat of vaporization at T_{ref} ,
	d_{bm}	bubble maximal diameter, m	κ	offset constant in ψ_2 function
	d_b	bubble diameter, m	μ_g	dynamic viscosity of drying
	D_{g0}	molecular diffusion coefficient at T_{ref} , m ² s ⁻¹	ν	exponent constant in ψ_2 fur
	e_f	measured inlet airflow error, m ³ /h	ϕ	sphericity of particles, dime
	e_h	measured inlet temperature error, °C	ψ_1	gas saturated humid curve
	g	gravitational acceleration, m s ⁻²	ψ_2	moisture film correction fur
	H_c	predictive controller control horizon in multiple of t_s ,	, -	characteristics of the partic
		dimensionless	θ_{a}	density of gas, kg m^{-3}
	H_{f}	expanded bed height, m	ry Oda	dry bulk density of the bed.
	H_n	predictive controller prediction horizon in multiple of t_s ,	Pus 0-	dry particle density kg m ⁻³
	P	dimensionless	ρs Ω	wet bulk density of the bed
	h.	heat transfer coefficient between drying gas and solids.	Pws	water density kg m ⁻³
		$J s^{-1} m^{-3} K^{-1}$	ρ_w	evanoration coefficient kg r
	h	heat transfer coefficient between drying gas and dryer wall	0	gog guporficial valueity bag
	чw	I s ⁻¹ m ⁻³ K ⁻¹	υ	gas superficial velocity bas
	H.	volumetric heat-transfer coefficient between hubble and		area of bed, m's
	11 _{bc}	cloud-wake regions based on volume of bubbles	v_{br}	inear velocity of a single bu
		$L_{o}^{-1} m^{-3} V^{-1}$	v_{mf}	gas superficial velocity at -1
	11	JS III K		ms
	H_{be}	volumetric neat-transfer coefficient between bubbles and r_{1}^{-1}	ϵ_{mf}	void fraction at minimum fl
		emulsion based on volume of bubbles, J s ⁻ m ⁻ K		less
	H_{ce}	volumetric heat-transfer coefficient between cloud-wake	ε_0	inlet air relative humidity, 9
		region and emulsion based on volume of bubbles,		
		$J s^{-1} m^{-3} K^{-1}$	Vectors of	and matrices
	H_{mf}	bed height at minimum fluidizing condition, m		
	k	discrete time, dimensionless	$\overline{\mathbf{x}}_0$	observer a priori state estin
	K_{bc}	coefficient of gas interchange between bubble and cloud-	â	observer estimated augment
		wake regions based on volume of bubbles, s ⁻¹	d	measured disturbances (1 \times
	K_{be}	coefficient of gas interchange between bubbles and emul-	f₄(●)	augmented model state upd
		sion based on volume of bubbles, s ⁻¹	$f(\bullet)$	state-space model state upd
	K_{ce}	coefficient of gas interchange between cloud-wake region	h (•)	augmented model state out
		and emulsion based on volume of bubbles, s^{-1}	$h_A(\mathbf{v})$	state space model output fi
	L_{or}	center-to-center spacing between adjacent holes on perfo-	n(●) M	state-space model output in
		rated plate distributor, m	IVI	serpoints tracking weights (
	N	observer window-size or horizon, dimensionless	N	hanipulated input weights
	N	number of orifices per unit area on perforated distributor.	Р	horizon initial observation
	- '0r	m^{-1}		(4×4)
	N	Nusselt number, dimensionless	Q	process noise estimated cov
	n n	fluid had draw onergy index weight in controller criterion	R	observation noise estimated
	p_e	nulu bed dryer energy index weight in controller criterion, t^{-1}	r	setpoints (3×1)
	D		u	manipulated inputs (2×1)
	P_w	pressure of saturated water vapor, mmHg	X _A	augmented model states (4
	Pr	Prandtl number, dimensionless	X	phenomenological model st
	R_{wv}	water vapor specific gas constant, J kg ⁻ K	y,	phenomenological model or
	Re	Reynolds number for packed beds, dimensionless	v	process measured outputs (
	s	Laplace variable, s^{-1}	J	Process measured outputs (
	T	temperature, K	Subcomin	ats
	t	time, s	Subscrip	ω
	ts	control algorithm sampling time, s	0	inlat goo
	T_w	dryer-wall temperature, K	U	miet gas
	T_{amb}	fluidized bed dryer room temperature, K	b	bubble phase
	T_{ref}	reference temperature, K	е	emulsion phase: interstitial
	W	fluid bed dryer energy consumption J	т	measured
I	••		n	amulaion phases solid narti

z	elevation, m			
Greek symbols				
$\alpha_{\chi p}$	relative tolerance on particle moisture content setpoint for end-of-batch detection, dimensionless			
χ^*_p	moisture content (dry basis), dimensionless moisture content of drying gas on surface of a particle (dry			
	basis), dimensionless			
$\zeta_{pc} \\ \mathcal{S}_b$	particle critical moisture content (dry basis), dimensionless fraction of fluidized bed consisting of bubbles, dimension- less			
/	heat of vaporization at T_{ref} , J kg ⁻¹			
c	offset constant in ψ_2 function			
I_g	dynamic viscosity of drying gas, kg $m^{-1} s^{-1}$			
v	exponent constant in ψ_2 function			
þ	sphericity of particles, dimensionless			
p_1	gas saturated humid curve			
₽2	moisture film correction function based on the absorption characteristics of the particle			
O_g	density of gas, kg m $^{-3}$			
\mathcal{O}_{ds}	dry bulk density of the bed, kg m ^{-3}			
O_s	dry particle density, kg m $^{-3}$			
O_{ws}	wet bulk density of the bed, kg m^{-3}			
O_w	water density, kg m ⁻³			
τ	evaporation coefficient, kg m $^{-2}$ s $^{-1}$			
v	gas superficial velocity based on the total cross-sectional area of bed, m $\rm s^{-1}$			
v_{br}	linear velocity of a single bubble, m s^{-1}			
Umf	gas superficial velocity at minimum fluidizing condition, m s^{-1}			
Emf	void fraction at minimum fluidizing conditions, dimension- less			

%RH

$\overline{\mathbf{x}}_0$	observer a priori state estimates (4×1)		
â	observer estimated augmented states (4×1)		
d	measured disturbances (1×1)		
$\mathbf{f}_{A}(\mathbf{\bullet})$	augmented model state update function (4×1)		
f (●)	state-space model state update function (3×1)		
$\mathbf{h}_{A}(\bullet)$	augmented model state output function (3×1)		
h (●)	state-space model output function (3×1)		
М	setpoints tracking weights (3×3)		
N	manipulated input weights (2×2)		
Р	horizon initial observation error estimated covariance		
	(4×4)		
Q	process noise estimated covariance (4×4)		
R	observation noise estimated covariance (3×3)		
r	setpoints (3×1)		
u	manipulated inputs (2×1)		
XA	augmented model states (4×1)		
X	phenomenological model states (3×1)		
y _s	phenomenological model outputs (3×1)		
у	process measured outputs (3×1)		

emulsion phase: interstitial gas т measured emulsion phase: solid particles р

 χ_{pm} output disturbance state, %w.b.

 x_i

Download English Version:

https://daneshyari.com/en/article/5000318

Download Persian Version:

https://daneshyari.com/article/5000318

Daneshyari.com