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a b s t r a c t

Digital repetitive controllers are widely employed to track/reject the periodic signals with zero steady-
state error. Their implementation involves the use of single or multiple digital delay elements. Practically,
the delay element is implemented by the use of memory locations, where samples are held and released
after a specific number of sampling periods, equivalent to the desired time delay. A problem arises when
the desired time delay becomes a non-integer multiple of the sampling time. Such time delays can be
accurately realized by employing a fractional delay filter

This paper presents a Taylor Series expansion based digital repetitive controller designed to imple-
ment any (integer, non-integer) delay in the control of power converters, occurring due to uncontrollable
variations in the reference frequency. The T3644aylor Series expansion transforms the fractional delay
filter design problem to a differentiator/sub-filter design. Finite impulse response (FIR) and infinite im-
pulse response (IIR) fractional delay (FD) filter concepts can be applied to realize the required fractional
delay. This structure provides efficient on-line tuning capabilities i.e. FD can easily generate any required
fractional delay without redesigning the filter when the delay parameter varies. An example is de-
monstrated to show the effectiveness of this approach, for a single-phase power inverter feeding a
passive load.

& 2017 Published by Elsevier Ltd.

1. Introduction

Internal model principle (IMP) based Repetitive Controllers
(RC) achieve zero steady-state error tracking of any periodic signal
by employing a signal generator inside the stable closed-loop
system (Chen, Zhang, & Qian, 2013; Wang, Wang, Zhang, & Zhou,
2007; Zou, Zhou, Wang, & Cheng, 2014). Repetitive controllers are
widely used in applications including disk drive systems, power
converters and robotics motion. In these applications, periodic
disturbances act upon the control system or the desired output
signal is periodic. These controllers can only track or regulate
signals with a known fixed frequency (Costa-Castelló, Olm, & Ra-
mos, 2011). For those cases where the time period of the periodic
reference/disturbance signal is uncertain, a robust repetitive con-
troller structure is needed.

In many cases, the periodic reference or the disturbance varies
dynamically due to the load variation or position/time de-
pendency. Quite a number of adaptive repetitive controllers have
been developed for time-varying periodic signals (Costa-Castelló
et al., 2011; Steinbuch, 2002; Zou et al., 2014). These adaptive

repetitive controllers either use adjustable sampling time (Cao &
Ledwich, 2002) or a fractional delay (FD) filter to realize the re-
quired delay (Zou et al., 2014). Adjustable sampling time techni-
ques adjust the sampling frequency ( )fs to obtain an integer ratio
between ( )fs and the frequency of the reference signal ( )f .

Cao and Ledwich (2002) have proposed a method based on
multi-rate control to deal with the time-varying period and non-
integer samples/period caused by a fixed sampling rate (Cao &
Ledwich, 2002). In this technique, only the repetitive controller
experiences a variable sampling rate which is an integer multiple
of the reference signal period. Interpolators are utilized to inter-
face the repetitive controller to the rest of the system, which uses
a fixed sampling rate. However, the structural changes in the
control system due to the redesign of RC may result in the de-
stabilization of the system.

Rashed, Klumpner, and Asher (2013) have proposed a similar
method for three-phase grid inverters which uses the estimated grid
frequency to adaptively update the RC period and resonant con-
troller's resonant frequencies, while interpolation is used to preserve
the RC rejection capability under non-integer samples per period
(Rashed et al., 2013). Wang et al. (2007) proposed a fractional delay
based repetitive control scheme for single-phase PWM inverters,
where a fractional delay low-pass filter is introduced to approximate
the internal model of the fractional-period signals. Two different
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methods are introduced to design the fractional delay (FD) low-pass
filters: the Lagrange interpolation method and least square method.
Chen et al. have also proposed an improved RC control scheme with
a finite impulse response (FIR) filter (Chen et al., 2013). A simple
zero-crossing method has been used to detect the reference period
to adapt to the variable grid frequency. This method performs well
in low noise environments only. Yang et al. (2014) and Zou et al.
(2014) have also used finite impulse response FD filters to realize the
fractional part of the required non-integer delay. Another approach
is to use a higher order repetitive controller to enhance the system
robustness to reference frequency variations (Steinbuch, 2002). But
almost all of these techniques require the redesign of the FD filter
coefficients with fractional delay variations. Among all these tech-
niques Lagrange interpolation based FD repetitive control scheme
commonly known as Fractional Order Repetitive Control (FORC) has
been more frequently used in control of power converters (Nazir,
Zhou, Watson, & Wood, 2015; Yang et al., 2014; Zou et al., 2014).

In this paper, a Taylor Series expansion based RC scheme is
implemented. It provides a systematic approach for non-integer
delay cases under a fixed sampling rate. This method designs an
FD filter based on well known Taylor Series expansion, which
realizes any required delay without redesigning the FD filter
coefficients. Taylor Series expansion based FD filters have been
widely used in signal processing and circuit theory (Abbas &
Gustafsson, 2009; Abbas, Gustafsson, & Johansson, 2013; Blok,
2012; Laakso, Valimaki, Karjalinen, & Laine, 1996). Only few re-
ferences have been cited here. The main contribution of this re-
search paper is application of Taylor Series expansion based FD
filter along with RC for control of power converters.

This paper is organized as follows. An overview of repetitive
controllers is given in Section 2. Section 3 provides an insight to
the Taylor Series expansion based RC control scheme. Section 4
presents the experimental investigation of the proposed control,
and finally the conclusion is given in Section 5.

2. Overview of repetitive control

Repetitive controllers can be decomposed into three main
parts; the internal model ( )( − )− −z z1N No o , low-pass filter ( )( )Q z

and the compensator ( )( )G zs . The internal model is primary in-
charge of ensuring zero steady-state error, the low-pass filter en-
hances the system robustness while the compensator guarantees
the stability of the closed-loop system (Costa-Castelló et al., 2011).
Usually repetitive controllers are implemented in a plug-in fash-
ion, as shown in Fig. 1. The conventional controller ( )( )G zc stabi-

lizes the plant ( )( )G zp and provides disturbance attenuation across
a broad frequency spectrum.

When the reference/disturbance period ( )T and the sampling
period ( )Ts are both constant, the order of the repetitive controller
( = )N T To s is also constant. Sufficient stability criteria are given in
Chen et al. (2013), Costa-Castelló et al. (2011), Yang et al. (2014),
Zou et al. (2014):

� The closed-loop system without the repetitive controller Go(z)
should be stable. i.e.
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( ) ( )

+ ( ) ( ) ( )
G z

G z G z

G z G z1 1
o

c p

c p

The roots of + ( ) ( )G z G z1 c p should be inside the unit circle.
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3. Taylor series expansion based design methodology

Taylor Series expansion uses various sub-filters to approximate
the required fractional delay. Assuming that =− −( + )z zN N po i where

= [ ]N int Ni o is the integer part of No and = − < <p N N p, 0 1o i is the
fractional part. The fractional delay =− −z ep jwp can be expressed as
a polynomial in p using the Taylor Series expansion as follows
(Eghbali, Johansson, Saramäki, & Method, 2013; Möller, Machiraju,
Mueller, & Yagel, 1997; Vesma, Hamila, Saramäki, & Renfors, 1998):
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Since the fractional part is small i.e. <p 1, the term +pM 1 and other
higher order multiples of p approaches zero when M is large.
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where M is the order of the polynomial.
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where ( ) = ( − ) !F z jw k/k
k is the scaled frequency response of kth

order differentiator (Pei & Tseng, 2003).
The FD filter response approaches its ideal behavior as the

value of M approaches infinity. According to (4) the FD filter can be
implemented by +M 1 different sub-filters Fk(z) where

= …k M0, 1 as shown in Fig. 2. This structure has been referred as
a Farrow structure in Diaz-carmona and Dolecek (1996), Eghbali
et al. (2013), Rajalakshmi, Gondi, and Kandaswamy (2012).

Many techniques are available in the literature to design these
sub-filters (Babic, Vesma, Saramaki, & Renfors, 2002; Candan,
2007; Diaz-carmona & Dolecek, 1996; Eghbali et al., 2013; Raja-
lakshmi et al., 2012; Roy, 1995): IIR and FIR sub-filters can be
employed (Roy, 1995; Tseng, 2002; Laakso et al., 1996). Once the

+M 1 sub-filters ( ( ))F zk are designed and inserted into the struc-
ture of Fig. 2, only the parameter p needs to be adjusted to achieve
any fractional delay. The sub-filters parameters remain unchanged
even in the case of fractional delay variations.

Simplest of all, Lagrange interpolation can be used to design
Fk(z) in the time-domain. This method is utilized here to design

+M 1 sub-filters.
All the +M 1 sub-filters can be expressed as Nth order poly-

nomials with constant coefficients and ≥N M (Farrow & Con-
tinuously, 1988). Usually N ¼ M is used. The Lagrange interpola-
tion based sub-filters' coefficients can be calculated as follow:

Fig. 1. General plug-in repetitive control system. Fig. 2. Taylor Series expansion based FD filter.
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