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A B S T R A C T

A time-delay identification algorithm in closed-loop dynamic processes with disturbance based on maximum
correlation analysis was proposed in this paper. To denoise the output data, the response of process disturbance
was first estimated on routine data and then eliminated from the output. Next the incremental denoising
process data were proposed to be used against the influence of system dynamic on the time-delay estimation.
The correlations between the incremental input and different delayed output were computed and the delayed
time corresponding to the maximum correlation was identified as the time-delay. The application in the Wood-
Berry process and an industrial process showed the validity of the proposed algorithm.

1. Introduction

Many control strategies in industrial control theory are based on
the process models which directly affect the control performance of the
systems (Hong, Iplikci, Chen, & Warwick, 2014; Jin, Ryu, Sung, Lee,
& Lee, 2014; Zhou et al., 2015). Time-delay is an important parameter
in the process model which decides the time of implementing control
action in model based control strategy (Jin et al., 2014). Too early
adjustment of the control action would cause the significant overshoot
and even severe oscillation, while too late controller regulation would
result in long time deviation of the controlled variables (Sun, Song, &
Xu, 2013a; Sun, Qin, Singal & Megan, 2013b). The disturbance can be
overcome timely with less oscillation if the time-delay can be precisely
estimated.

In many kinds of data-driven modeling methods, time-delay is not
an explicit model parameter. For example, it is latent in the orders of
inputs and outputs in the CARIMA model (Wang, Guo, & Zhang,
2001). In other modeling methods such as PLS (Partial Least Square),
neural network, and so on, the time-delay is actually latent in the time
match process of input and output data. Its identification attracts little
attention in these modeling methods and is often artificially assumed in
practice (Aljamaan, Westwick, & Foley, 2015; Sun et al., 2013a,
2013b; Wang et al., 2001). However, time-delay is an important
parameter and is necessarily to be identified separately from other
model parameters for most explicit controller tuning rules use the low
order plus time-delay models (Ni, Xiao, & Shah, 2010).

An increasing number of techniques have been proposed for the
time-delay identification problem, such as step response method

(Cutler & Ramaker, 1980; Liu, Wang, & Huang, 2013) , relay
feedback method (Jin et al., 2014; Liu & Gao, 2009; Skogestad,
2003), variable structure observer method (Drakunov, Perruquetti,
Richard, & Belkoura, 2006), various optimization approaches
(Gawthrop, Nihtilä, & Besharati-Rad, 1989; Loxton, Teo, &
Rehbock, 2010; Tang & Guan, 2009; Yang, Iemura, Kanae, &
Wada, 2007; Ren et al., 2005; Bedoui and Abderrahim, 2015;
Michael, Christopher, & Lino, 2015; Lin, Loxton, Xu, & Teo, 2015),
and correlation analysis method (Knapp & Carter, 1976; Ni et al.,
2010; Talei and Chua, 2012; Sun, Jia, Du, & Fu, 2016; Cao, So, &
Chan, 2017). These methods can be classified into two categories,
model independent ones and model dependent ones.

The variable observer method and the extensively studied optimi-
zation based method are model dependent identification approaches.
The analytical solution of estimated time-delay can be obtained by the
variable observer method but it is on the condition of known state
space model (Drakunov et al., 2006). Various optimization methods
including the least square optimization (Gawthrop et al., 1989; Ren
et al.,2005; Bedoui & Abderrahim, 2015; Yang et al., 2007; Michael
et al., 2015), particle swarm optimization (Tang & Guan, 2009),
gradient-based optimization (Lin et al., 2015; Loxton et al., 2010) and
so on are extensively studied in the identification of model parameters.
The optimization based methods optimally solve the time-delay para-
meters together with other model parameters to minimize the output
prediction errors. Although the optimal prediction of output is
obtained, there are some limitations for the optimization based
identification of time-delay: (1) Model structure is required first before
the parameters identification. In practice, the selected model structure
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is likely not match with the actual process model resulting in the
incorrect estimation of time-delay. (2)Time-delay and other model
parameters are identified simultaneously. There may be the case that
not all the parameters are accurate but the predicted output is optimal
in the training. People do hope to know the accurate time-delay in
some cases such as determining the action time of feed-forward and the
computation of incidence matrix in the multi-variables performance
assessment. (3) These optimization-based methods are locally optimal
for the limited samples, not the global optimum.

The step response method, relay feedback method and correlation
analysis method belong to the model independent class. The first two
methods both add additional excitation signals on the object and
estimate the time-delay on the output response (Liu et al., 2013). It is
not applicable for running processes because the excitation signal is not
always allowed. Correlation analysis method estimates the time-delay
by maximizing the correlation coefficients of two signals with time-
delay (Cao et al., 2017; Sun et al., 2016). It is widely used in the
estimation of time-delay between two static signals, for example, the
time-delay between the rainfall and runoff time of rivers (Talei and
Chua, 2015). For chemical processes, it is not applicable directly for the
following reasons: (1) In generalized correlation analysis method and
its modified versions, the maximum correlation reflects the time-delay
between two variables at their stationary state and the dynamic
between the two signals are not considered. But in the control system,
the output variable changes dynamically in each regulating process and
reaches the stable state after that. Hence, the dynamical regulating
process must be considered in the identification of time-delay in
chemical processes (Ni et al., 2010). Rad et al. suggested to overcome
the dynamic problem by firstly identifying a dynamic model via the
standard least square algorithm, and then producing a pseudo-pure
delay system with no dynamic by the identified least square model to
identify the time-delay via correlation technique (Rad, Lo, & Tsang,
2003). But the performance of time-delay estimation would severely
depend on the precision of the least square model in this method. Ni
et al. proposed a dynamic separation method against the influence of
system dynamic on time-delay estimation, in which continuous wavelet
transform was applied to separate the dynamics term from the time-
delay and then correlation analysis method was combined to estimate
the time-delay (Ni et al., 2010). (2) For closed-loop systems, the output
signal is the sum response of control channel and disturbance channel.
In the correlation analysis method, the data variation of disturbance
channel inevitably interferes in the correlation of input and output
variables, and thus results in the inaccuracy of the estimation. Some
researchers have noticed the disturbance problem in the model
identification and some excellent works have been done against the
influence of load disturbance (Dong, Liu, Wang, Bao, & Cao, 2017;
Kaya, 2006; Liu et al., 2013; Ljung, 2010). It is a pity that these load
disturbance elimination methods are integrated in the identification
algorithm and cannot be directly applied in correlation analysis
method.

This paper tried to solve the dynamic and disturbance problem to make
the correlation analysis method applicable in the time-delay identification
of chemical processes. A disturbance signal estimation method by the
routine input and output data was deduced based on part of Sun’s work on
process performance monitoring (Sun et al., 2013a, 2013b), which was
used to separate the disturbance response from the output. To against the
dynamic problem, the incremental input-output sequences were considered
to express the system dynamic in the correlation analysis instead of
separating the dynamic terms in most previous works.

The rest of the paper is organized as follows. The disturbance
identification method based on closed loop data is introduced in Section
2. The maximum correlation calculation of delayed incremental sequence is
described in Sect. 3. The overall algorithm for dynamic time-delay
identification is discussed in Sect. 4. The application of the proposed
algorithm in the simulation and the practical industrial process is illustrated
in Sect, 5. Conclusions are made in Sect. 6.

2. Disturbance signal identification

In industrial control processes, the outputs are the synthesized
response of control channel and disturbance channel. Fig. 1 shows a
SISO closed-loop control process whose output can be expressed as

y k G q u k H q e k( ) = ( ) ( )+ ( ) ( )o o
o (1)

where G q( )o and Ho(q) are the true but unknown process and
disturbance models, G q( )c is a linear time-invariant (LTI) controller,
q is the backward shift operator, y k( ) is the output of the control
system, r k( ) is the set-point of y k( ), u k( ) is the input of control channel,
e k( )o is the input of disturbance channel that assumed as a white noise
with zero mean, d k( )o is the disturbance response of the system. For the
sake of simplification, the backward shift operator q is omitted in the
following description. From (Ljung, 1999), one-step ahead prediction
of the output y kk( − 1)∼ is
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where Ho and Goare strictly causal. Denoting
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for sufficiently large truncation lengths M and N. It is clear from (3)
that e k( )o can be obtained from the routine closed-loop data y k( )and
u k( ).

Define

y k y k y k y k p( ) = [ ( ) ( −1)… ( − )]p

e k e k e k e k p( ) = [ ( ) ( −1)… ( − )]p
o o o o

u k u k u k u k p( ) = [ ( ) ( −1)… ( − )]p

where p is the sliding time window.
Define

Y k y k y k y k M( −1) = [ ( −1) ( −2)… ( − )]M p p p
T

U k u k u k u k N( −1) = [ ( −1) ( −2)… ( − )]N p p p
T

Z k Y k U k( ) = [ ( −1) ( −1)]p M N
T

where the dimensions of Y k( − 1)M ,U k( − 1)N andZ k( )p are M p* ,N p*
and M N p( + )* , respectively. Thus, (3) becomes

Fig. 1. Structure of closed-loop control system.
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