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A B S T R A C T

Perimeter controllers, located at a regional border, can manipulate the transfer flows across the border to
optimize the regional operational performance. The macroscopic fundamental diagram (MFD), that relates
average flow with accumulation, is used to model the traffic flow dynamics. In this paper, two cases of perimeter
control inputs are considered: coupled and decoupled control. For both cases, the explicit formulations of the
optimal feedback control policies and proofs of optimality are provided for three criteria. The proofs are based
on the modified Krotov-Bellman sufficient conditions of optimality, where the upper and lower bounds of state
variables are calculated.

1. Introduction

In the last decade, network traffic flow modeling with the
Macroscopic Fundamental Diagram (MFD) representation has inten-
sively attracted the traffic flow and control researchers. The MFD
simplifies the modeling task of the traffic flow dynamics for large-scale
urban networks, as it provides aggregate relationships between traffic
variables at an urban region.

The MFD provides a unimodal, low-scatter relationship between
network vehicle density (veh/km) or accumulation (veh) and network
space-mean flow (outflow) (veh/h) for different network regions, if
congestion is roughly homogeneous in the region. The physical model
of the MFD was initially proposed by Godfrey (1969), but the
theoretical elements for the existence of the MFD were provided later
by Daganzo (2007). The MFD was first observed with dynamic features
in congested urban network in Yokohama by Geroliminis and Daganzo
(2008), and investigated using empirical or simulated data by Buisson
and Ladier (2009), Ji, Daamen, Hoogendoorn, Hoogendoorn-Lanser,
and Qian (2010), Mazloumian, Geroliminis, and Helbing (2010),
Daganzo, Gayah, and Gonzales (2011), Gayah and Daganzo (2011),
Zhang, Garoni, and de Gier (2013), Mahmassani, Williams, and
Herman (1987), Olszewski, Fan, and Tan (1995), Lin, Kong, and
Huang (2014), Leclercq, Chiabaut, and Trinquier (2014) and others.

Homogeneous networks with small variance of link densities have a
well-defined form of MFD (as illustrated in Fig. 1(a)), i.e. low scatter of
flows for the same densities (or accumulations), Geroliminis and Sun
(2011b), Mazloumian et al. (2010), Daganzo et al. (2011), Knoop,
Hoogendoorn, and van Lint (2013), Mahmassani, Saberi, and Zockaie

(2013). Note that heterogeneous networks might not have well-defined
forms of MFD, mainly in the decreasing part of the MFD, as the scatter
becomes higher as accumulation increases and hysteresis phenomena
has been found to exist (Buisson & Ladier, 2009; Daganzo et al., 2011;
Geroliminis & Sun, 2011a; Ramezani, Haddad, & Geroliminis, 2015;
Saberi & Mahmassani, 2012). As a solution, these networks might be
partitioned into more homogeneous regions with small variances of
link densities, Ji and Geroliminis (2012). Note that the network
topology, the signal timing plans of the signalized intersections inside
the region, and the infrastructure characteristics affect the shape of the
MFD, see e.g. Geroliminis and Boyacı (2012).

The MFD concept has been utilized to introduce control policies
that aim at improving mobility and decreasing delays in large urban
networks, Daganzo (2007), Haddad and Geroliminis (2012),
Geroliminis, Haddad, and Ramezani (2013), Hajiahmadi, Haddad,
Schutter, and Geroliminis (2015), Haddad, Ramezani, and
Geroliminis (2013), Aboudolas and Geroliminis (2013), Keyvan-
Ekbatani, Kouvelas, Papamichail, and Papageorgiou (2012), Knoop,
Hoogendoorn, and Van Lint (2012), Zhang et al. (2013), Gayah, Gao,
and Nagle (2014). E.g. perimeter control strategies, i.e. manipulating
the transfer flows at the perimeter border of the urban region, have
been introduced for single-region cities in Daganzo (2007), Keyvan-
Ekbatani et al. (2012), Haddad and Shraiber (2014), and for multi-
region cities in Geroliminis et al. (2013), Haddad et al. (2013),
Hajiahmadi et al. (2015), Aboudolas and Geroliminis (2013),
Ramezani, Haddad, and Geroliminis (2015), Haddad (2015). In this
paper, the perimeter control for a single urban region modelled by an
MFD is treated.
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Different control approaches have been proposed to solve perimeter
control problems for single-region cities. The pioneer work in this field
is related to Daganzo (2007), where a bang-bang control has been
presented as an optimal control policy for maximizing the rate at which
trips are served at an urban region. A Proportional-Integrator (PI)
gating controller has been designed for an urban region in Keyvan-
Ekbatani et al. (2012). The formulated nonlinear system is linearized
around a priori known set-point chosen carefully within a value range
in the uncongested regime of the MFD having positive slope and close
to the critical state (total time spent) of the MFD function. The work in
Keyvan-Ekbatani et al. (2012) aims at regulating the dynamic system
around the desired chosen set-point, at which the system's total time
spent is minimized. Note that the work in Keyvan-Ekbatani et al.
(2012) do not allow direct consideration of the control constraints, but
impose them after the design process, e.g. adjusting or fine-tuning the
controller gains.

In Haddad and Shraiber (2014), a robust perimeter controller has
been designed for an urban region with the MFD representation. The
designed controller is a fixed PI-controller with proportional and
integrator gains, which stabilizes the linearized system against MFD
and parameter uncertainties. The robust control in Haddad and
Shraiber (2014) was designed based on the principles of Quantitative
Feedback Theory, Houpis, Rasmussen, and Garcia-Sanz (2006). The
robust controller is also designed to handle control constraints within
the design level in a systematic way, i.e. the control constraint is
integrated in the closed-loop control with the help of the so-called
describing function. Note that the describing function should be
carefully chosen to guarantee satisfying the control constraint. The
results showed that the controller has performed well for the whole
state set, and not necessary for a value range nearby a set-point.

Following Daganzo (2007), Keyvan-Ekbatani et al. (2012), Haddad
and Shraiber (2014), the current paper also deals with perimeter
control problems for single-region cities. In Daganzo (2007), an
optimal solution was presented analytically for maximizing the rate
at which trips are served. However, the optimal control solution for one
objective function and the optimality proof were presented for a basic
dynamic model, i.e. one vehicle conservation equation without decom-
posing accumulations based on their destinations. The current paper
focuses on a dynamic model that decomposes the accumulation into
two vehicle conservation equations. The presented model in Haddad
and Shraiber (2014) is utilized. Note that the model in Keyvan-
Ekbatani et al. (2012) has a different form with different state
variables. However, both works (Haddad & Shraiber, 2014; Keyvan-
Ekbatani et al., 2012) formulated similar regulating control problems
to which PI controllers were designed to regulate around a reference
point. In this paper, optimal control problems are formulated with
control constraints for a perimeter traffic flow at an urban region, the
optimal feedback control policies are derived, and proofs of optimality
are provided for three criteria: (i) maximum total travelled distance

(TTD), (ii) minimum total time spent (TTS), and (iii) minimum
integrated errors from accumulation reference, with the help of the
modified Krotov-Bellman sufficient conditions of optimality. Both
coupled and decoupled controllers are treated. The region is assumed
to be a homogeneous region having a well-defined form of MFD with
two traffic flow demands generated inside the region with internal and
external destinations, and a generated traffic flow outside the region
with a destination to the region.

2. Optimal perimeter control: problem definition

This paper deals with a perimeter control problem for a homo-
geneous urban region having a well-defined form of MFD, as schema-
tically shown in Fig. 1. The flow dynamic equations for a homogeneous
urban region have been already formulated in Haddad and Shraiber
(2014), and they are briefly presented in this paper as follows. There
are two state variables denoted by n t( )11 and n t( )(veh)12 , which
respectively represent the number of vehicles traveling in the region
with destination inside and outside the region at time t. The total
accumulated number of the vehicles in the region is
n t n t n t( ) = ( ) + ( )1 11 12 . The MFD links the accumulation, n t( )1 , and trip
completion flow, defined as the output flow of the region. The MFD
provides a low-scatter relationship, if congestion is roughly homo-
geneous in the region. The MFD is denoted by G n t( ( ))(veh/s)1 1 , and it is
assumed to be concave, twice differentiable, non-negative, and strictly
unimodal. This assumption is based on many simulation and empirical
results, e.g. in Geroliminis and Daganzo (2008). The MFD is defined as
the trip completion flow for the region at n t( )1 : (i) the sum of a transfer
flow, i.e. trips from the region with external destination (outside the
region), plus (ii) an internal flow, i.e. trips from the region with internal
destination (inside the region). The transfer flow is calculated corre-
sponding to the ratio between accumulations, i.e. n t n t G n t( )/ ( )· ( ( ))12 1 1 1 ,
while the internal flow is calculated by n t n t G n t( )/ ( )· ( ( ))11 1 1 1 .

The traffic flow demands generated in the region with internal and
external destinations are respectively denoted by q t( )11 and q t( )12 (veh/
s), while q t( )21 (veh/s) denotes a generated traffic flow outside the
region with destination to the region, as schematically shown in
Fig. 1(b). Following Haddad and Shraiber (2014), a perimeter control
is introduced on the border of the urban region, where its inputs u t( )12
and u t( )(−)21 control the ratios of flows, u t u t0 ≤ ( ), ( ) ≤ 112 21 , that cross
the border from inside to outside and from outside to inside the region
at time t, respectively, see Fig. 1(b). The control input constraints

u t u t0 ≤ ( ), ( ) ≤ 112 21 describe the physical limits of controlling the
ratios of flows that cross the border at time t. However, these values
of upper and lower limits, i.e. 1 and 0, might raise practical imple-
mentation issues, e.g. if u t( ) = 021 this means that the perimeter
controller must prevent all vehicles traveling towards the region to
enter probably for some time interval, which might result unreasonable
control policy for the travellers. Moreover, with these values of limits

Fig. 1. (a) A schematic MFD which is Lipschitz, continuous, non-negative, and unimodal function, (b) An urban region with three traffic demand q t( )11 , q t( )12 , q t( )21 , and perimeter

control with inputs u t( )12 and u t( )21 .
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