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A numerically robust approach to steady-state calibration of nonlinear dynamic models is presented. The
approach is based on explicit formulation of the constraints on validity of internal model signals by set of
inequalities. The constrained optimization with feasible iterates guarantees that the model will never be
evaluated with invalid internal signals. This overcomes numerical difficulties often encountered when
dealing with highly nonlinear models. Because the approach uses a large number of slack variables,
distributed least squares algorithm is proposed. The robustness of this approach is demonstrated on a
steady-state calibration of turbocharged diesel engine model starting from grossly inaccurate initial

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Control oriented models are gaining popularity in the auto-
motive industry due to the increased complexity of modern en-
gines, stringent emission standards (Hallstrom & Schiavon, 2007;
Ohrnberger, Becker, & Doehring, 2012), on-board diagnostics leg-
islation (Regulation (ec) no 595/2009, 2009; Section 1968.2, 2013)
and their short innovation cycles. Dynamic models of Internal
Combustion Engines (ICE) vary widely in both form and com-
plexity. The model is usually built for a specific subclass of control
problems, required accuracy and the time scale, see Guzzella and
Onder (2009). The models often combine empirical, mechanical
and thermodynamical law and chemical kinetics. The models
range from simple local linear models to complex Computational
Fluid Dynamics (CFD) models. The high fidelity first-principles
models are used mainly for off-line analysis, system optimization,
diagnostics design. Besides the dynamic models, the global steady-
state nonlinear high fidelity models are often used in set-point
optimization. In contrast, the real time feedback control design is
still predominantly not model based, or it is based on local linear
models. The reason is that it is difficult to develop a first-princi-
ples-based model with sufficient accuracy. However, such models
would have a clear advantage of global validity and better
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extrapolation capabilities. With the growing complexity of en-
gines, their interactions with after-treatment systems, and in-
creasing number of actuators, the black box model development is
becoming a problem as it is difficult to cover the high-dimensional
operating space with experimental data.

The Mean Value Models (MVM) represent an example of such
first-principles models potentially useful for model-based controls
(Guzzella & Onder, 2009; Isermann, 2014; Nikzadfar & Shamekhi,
2015). They are “zero dimensional” models which consider the
average mass and energy flows over the engine cycles, neglecting
their pulsations caused by the periodic emptying and filling of
cylinders (Heywood, 1988). These models are primarily used for
design of air path controls. The model is built mainly around the
differential equations of the gas pressure and temperature at
certain control volumes, where the pressure and temperature is
assumed to be constant.

In automotive industry, it is the common practice that physical
models are calibrated component-wise. This is a different situation
from the process industry, where ingenious nonlinear model
identification methods were developed (Kozma, Savorgnan, &
Diehl, 2012). A typical engine test cell is equipped with sufficient
number of sensors which provide inputs and output signals to
component sub-models. This makes the model calibration pro-
blem a static fitting problem; the individual nonlinearities are
fitted separately. Such calibration approach is simpler compared to
the general nonlinear dynamic model identification.

The minimization of prediction errors on the component level
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does not guarantee the minimum prediction error of the resulting
dynamic model. Accuracy of the model built from separately fitted
components may be sub-optimal. There are two reasons for this.
Firstly, the model structure is imperfect. The fitted components
models may require some adjustment to compensate the effect of
the structure simplifications. Secondly, the turbocharged ICE re-
presents a feedback structure where the component errors are
propagated and possibly amplified. It is thus necessary to mini-
mize the errors which are most amplified even at the cost of
making the component fit worse on a local level.

This is why a system level optimization based calibration ap-
proach has been proposed (Pachner, Germann, & Stewart, 2012).
The idea is to start from the component level model and run an
optimization of model parameters to fit the global model predic-
tions to the data. This automated model calibration is still rela-
tively new in automotive industry and models are often adjusted
manually based on physical insight. The reason is that the opti-
mization can drive model parameters to incorrect values or values
which make some of the internal signals physically incorrect albeit
the prediction errors of the optimized signals are minimized. This
could be improved by constraining model parameters during the
optimization to certain a priori described sets, regularizing the
problem enforcing the prior information about model components
(Wahlstrom & Eriksson, 2011). It is also important to fit all avail-
able measurements during the automated calibration. The auto-
motive engineering community often regards such optimized
models with some suspicion and their predictions are considered
less reliable compared to models built from components.

At the same time, the MVM of turbocharged engines contain
nonlinear functions with singularities and constrained domains.
In Jankovic, Jankovic, and Kolmanovsky (1998), it has been pro-
ven that the states of this physical system remain in certain in-
variant set £2 within the singularities and argument to functions
remain in their domains. An accurate simulation of a properly
calibrated model started in £2 should stay there. Nonetheless, a
numerical simulation of the model can fail if the solution will fall
outside £2 due to discretization errors; crossing the singularity.
System level calibration of such a model is difficult. As the set €2
can depend on model parameters, the optimization can hit in-
feasible signal values when optimizing the parameters which
makes the numerical properties of the optimization problematic.
The model Jacobians can be ill-conditioned close to singularities,
models can be unstable or even have finite escape time outside
2. How system level model calibration can be approached in
such situation is studied in this paper. The idea is to use con-
straints on both parameters and model internal signals as a
regularization of the optimization process to prevent the opti-
mization from exploring infeasible areas.

The model singularities also affect the numerical solution of the
differential equations. Close to a singularity, or to a point where
the right-hand side of the differential equation is not differenti-
able, the model Jacobian is ill-conditioned which is a manifesta-
tion of model stiffness (Hairer & Wanner, 1999). The numerical
solution may then be difficult and special implicit solvers are re-
quired. At a singularity, the differential equations are even not
guaranteed to have unique solution (Picard Lipschitz Theorem). A
typical example of a point where the right-hand side of the model
differential equation is not differentiable is a model with the valve
flow equation when the pressure ratio across the valve is one. A
regularization of the valve flow function for such pressure ratios is
discussed by Guzzella and Onder (2009). There has been shown
how a smooth polynomial approximation can replace the non-
differentiable function close to the point of non-differentiability.
The model differential equations treated in this way will be less
stiff, and will definitely be Picard Lipschitz, which means easier
numerical solution. The approach proposed by this paper is

different as it is steady-state only. It constrains the model signals
to be always in certain € distance from the singularities. The model
is not allowed to enter “forbidden ground” during the steady-state
calibration. This avoids not only singularities but also other un-
desired or physically implausible signal values. Very often slow
and problematic model simulations are avoided.

2. Problem formulation

Model calibration: The nonlinear continuous-time dynamical
model is defined in the usual form (Khalil, 2002):

dx[dt = f (x;, ug, p), M

Vi = &Xe, Ug, P)- 2)

The model calibration problem is formulated as a deterministic
nonlinear least squares optimization solved with respect to vector
of model parameters p considering measured sampled sequences
of model input and output vectors, u, and y, respectively;
k=1, ..., K. Here y, and u, denote signal values of the continuous
time signals y, and u, sampled at discrete sampling instants
ty = lim._o+(kT; — €); with sampling period T;. The minimized sum
of prediction error squares will be referred as the cost function:

K
p = arg min Xk Uk, D) — Vi |
p = argmin kZzll llg s uk, p) = Y| 5
Here g is the output function of (2) and p denotes the vector of
parameter estimates.

Steady-state calibration: For stable nonlinear models, one of
the steps of model calibration can be fitting the model steady-
state responses towards steady-state data. The steady-state data
are often obtained by sampling the signals after a sufficient time
from the last change of inputs; thus allowing the process to
settle. It assumes that the system is strictly stable and the effect
of unmeasured disturbances is negligible. The steady-state cali-
bration problem is easier to solve and it is easier to represent the
global steady-state response by a limited data size which spans
the whole operating range. Following text will concentrate on the
steady-state calibration only because the transient calibration is
usually easier once the model steady-state is reasonable. In the
steady-state, the model equations (1) will become a set of
equality constraints for each of the steady state responses fitted:
f &k, u, p) = 0.

Constrained optimization approach: The proposed approach fo-
cuses on functions f, g which were derived from first principles
and which can have limited domains: (x;, u;, p) € Q. The func-
tions should be differentiable in a closed set €2 and they are
supposed to represent the correct physics there. As an example,
the oxygen concentration in the combustion products can be
evaluated as a simple fraction, provided both numerator and de-
nominator are positive. For negative values, the formula does not
represent reality:

[02]o = (M;[02); — Erftguen)/ (MY + Migel),
Q = {m;[02]; > EMpyer, Mgyel > €}. “4)

Outside £2 functions f, g represent some formal continuation of the
physical formulae. The model optimization can become difficult
outside £2. The possibility of exploring exterior of £2 also increases
risk of finding incorrect local optimum. In general, f, g can contain
fractions of functions, square roots of certain nonlinear expres-
sions, etc. It can be usually proven that the fraction denominators
and square root arguments at physical formulae must be positive.
This defines certain constraints on internal signals.
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