Control Engineering Practice 60 (2017) 51-62

journal homepage: www.elsevier.com/locate/conengprac

Contents lists available at ScienceDirect

Control Engineering Practice

Control
Engineering
Practice

Rapid development of modular and sustainable nonlinear model predictive

control solutions

@ CrossMark

Sergio Lucia®™", Alexandru Titulea-Codrean®, Christian Schoppmeyer”, Sebastian Engell”

2 Institute for Automation Engineering, Otto-von-Guericke University Magdeburg, Universitdtsplatz 2 (Building 07), 39106 Magdeburg, Germany
b process Dynamics and Operations Group, Technische Universitiit Dortmund, Emil-Figge-Str 70, 44227 Dortmund, Germany

ARTICLE INFO ABSTRACT

Keywords:

Nonlinear model predictive control
Robust control

Optimization

Process control

Development support

Numerical methods

While computational complexity is often not anymore an obstacle for the application of Nonlinear Model
Predictive Control (NMPC), there are still important challenges that prevent NMPC from already being an
industrial reality. This paper deals with a critical challenge: the lack of tools that facilitate the sustainable
development of robust NMPC solutions. This paper proposes a modularization of the NMPC implementations
that facilitates the comparison of different solutions and the transition from simulation to online application.
The proposed platform supports the multi-stage robust NMPC approach to deal with uncertainty. Its benefits

are demonstrated by experimental results for a laboratory plant.

1. Introduction

Model Predictive Control (MPC) is a popular control strategy that
has been successfully applied especially in the process industries as
reported e.g. in Qin and Badgwell (2003). The most important reason
for this success is its ability to handle coupled multivariable systems
with constraints. Its nonlinear variant, Nonlinear Model Predictive
Control (NMPC), has been studied intensively by the research com-
munity and many simulation results have been published in the last
years, including large-scale and highly nonlinear systems based on
rigorous models (e.g. Huang, Zavala, & Biegler, 2009; Idris & Engell,
2012 or Toumi & Engell, 2004). Although some companies develop
industrial NMPC implementations for some processes (see
Cybernetica, 2014; IPCOS, 2014; Pluymers, Ludlage, Ariaans, & Van
Brempt, 2008), its practical use is still in the early stages.

Some years ago, one of the main reasons that prevented NMPC
from being applied in practice was the computation time needed to
solve the resulting large-scale nonlinear programming problems. The
progress made in the last years on optimization algorithms and on
computational power has made it possible to significantly reduce the
computation times needed to solve NMPC problems even to the
microsecond range as shown in Houska, Ferreau, and Diehl (2011b).
With computational power no longer being a problem in many cases, at
least three major challenges remain as main obstacles for the applica-
tion of NMPC to real processes: The high cost of the development of
models, the lack of tools that provide a rapid and sustainable

implementation of NMPC and the presence of significant uncertainty
in the available models. The focus here lies on the two last challenges.
Dealing with model errors in a systematic but not overly conservative
manner also reduces the effort that is needed for the development of
high-fidelity models.

Regarding the implementation of NMPC, many software tools have
recently been developed in academia such as MUSCOD II (Diehl,
Leineweber, & Schifer, 2001), ACADO (Houska, Ferreau, & Diehl,
2011a), NMPC tools (Amrit & Rawlings, 2008), OptCon (Nagy, 2008)
or the MPT Toolbox (Herceg, Kvasnica, Jones, & Morari, 2013) among
others. These tools can solve different kinds of problems including
NMPC formulations. It is very common however that different applica-
tions require different software tools, depending on their complexity.
Currently most of these tools require an implementation of a model in a
particular syntax and an interface to other necessary components such
as a simulator or an observer. If the model is changed, the entire
implementation has to be modified. If one wants to test a new tool,
most of the code has to be rewritten. This lack of modularity results in
complex and non-sustainable implementations, making it also difficult
to compare the computational performance and solution qualities of
different algorithms or to combine parts of different tools.

This paper extends the results presented in Lucia, Tatulea-Codrean,
Schoppmeyer, and Engell (2014) by describing in more detail a new
concept for the modularization of a NMPC implementation, dividing it
into four main components: model and problem description, optimizer,
observer and simulator. Such modular design makes it possible to

* Corresponding author at: Institute for Automation Engineering, Otto-von-Guericke University Magdeburg, Universititsplatz 2 (Building 07), 39106 Magdeburg, Germany.
E-mail addresses: sergio.lucia@ovgu.de (S. Lucia), alexandru.tatulea-codrean@bci.tu-dortmund.de (A. Tatulea-Codrean),
christian.schoppmeyer@bci.tu-dortmund.de (C. Schoppmeyer), s.engell@bci.tu-dortmund.de (S. Engell).

http://dx.doi.org/10.1016/j.conengprac.2016.12.009

Received 25 April 2016; Received in revised form 18 December 2016; Accepted 21 December 2016

0967-0661/ © 2016 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/09670661
http://www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2016.12.009
http://dx.doi.org/10.1016/j.conengprac.2016.12.009
http://dx.doi.org/10.1016/j.conengprac.2016.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.12.009&domain=pdf

S. Lucia et al.

compare different solutions (e.g. different discretizations or estimators)
just by exchanging the corresponding module, but maintaining the rest
of the solution. The effort of going from simulation to an online
application is also reduced to the exchange of a simulator module by an
application module. The platform supports the multi-stage NMPC
(Lucia, Finkler, & Engell, 2013) approach to deal with uncertainties
in a systematic way. Both contributions have been combined in the
environment do-mpc to provide a framework for the rapid and
sustainable development of standard and multi-stage NMPC solutions,
which can be easily transferred to online applications, as illustrated by
experimental results obtained for a laboratory reactor.

do-mpc provides a unique environment that can be useful to all
kinds of users due to the flexibility of the implementation. The use of
the CasADi (Andersson, Akesson, & Diehl, 2012) tool set makes it
possible to modify the NMPC formulation provided within do-mpc in a
simple manner to include specific elements necessary for alternative
formulations of the resulting optimal control problems (e.g., conditions
for stability or robustness) rather than providing a black-box NMPC
tool. Practitioners can benefit from the existence of templates to
develop state-of-the-art implementations of both multi-stage and
standard NMPC with low effort. The modularized implementation
leads to sustainable NMPC solutions that can be reused when models
are updated, or that can be easily transferred to the real system once
the desired performance is achieved in simulations, as shown by the
experimental results presented in this paper.

The remainder of this paper is structured as follows. Section 2
explains the concepts and the main components of the modular
implementation of NMPC, as well as the do-mpc environment. The
experimental setup is described in Section 3. The simulation and
experimental results, together with a short review of multi-stage
NMPC, are presented in Section 4. The paper is concluded in Section 5.

2. do-mpc: an environment for the rapid development of
modular and sustainable NMPC solutions

One of the main outcomes of the European research project
EMBOCON (Embedded Optimization for Resource Constrained
Platforms) was the development of the open source software platform
GEMS (Generic EMBOCON Minimal Supervisor) (Schoppmeyer,
2013).

The central idea of GEMS is to offer a set of general and
standardized interfaces to simplify the process of developing and
deploying a model-based control algorithm for a real system, and to
offer a so-called supervisor that manages the flow of information
between the different parts of the implementation. The implementation
of a model-based control approach in GEMS is divided into four main
components: the model, the optimizer, the observer and the simulation
or real application (see inner blocks in Fig. 1). The exchange of
information between the different modules is managed and logged by
a supervisor. Using this conceptual idea, existing or newly developed
algorithms for control, for simulation or for state estimation of a
system can be implemented based on the GEMS interfaces. The
interfaces are structured so as to encapsulate all the information
needed by GEMS at run-time and they are implemented in plain C-
code, which offers the possibility to integrate other tools and to expand
the functionality with basic programming techniques.

This modularization idea has been extended and implemented in
the environment do-mpc. do-mpc is a platform that uses the main ideas
of GEMS to provide users with an easy, modular and robust way to
realize sustainable implementations of NMPC, with a special focus on
multi-stage NMPC. Within do-mpec, it is proposed to structure the four
different modules in the following manner.

The model and problem description module contains the right-
hand side of the ordinary differential equations or differential algebraic
equations, including all model parameters and the definition of model
states and inputs. Here also the control and estimation tasks (initial

52

Control Engineering Practice 60 (2017) 51-62

yeur %’
= 2 g
> | model a E-
9) [cB
N — © Jucur ®
= 3 = [&
e} e} = 3
=N o
5 = 5
o o
@ | updates o |[xcur =
[i =
m
=

Optimizer Interface

by

ucur Xcur

Standard NMPC

CasADi / IPOPT

Fig. 1. Modular scheme of an NMPC implementation with four main blocks: Model,
optimizer, observer and simulator. The arrows communicating different modules
indicate the information exchange and possible updates performed between modules.
A combination of the four modules forms a do-mpc configuration.

condition, objective, constraints) should be defined. do-mpc provides
templates using the scripting language Python as a user-friendly
environment for the representation of the information in the model
and problem description module. It is not necessary to use this
template, i.e., it is possible to define this information using any existing
code or software as long as it passes the necessary information to the
model interface so that the other modules can make use of it. It is also
possible to define models of different complexity to be used with each
one of the other modules. For example, one can use a simple model for
the optimization, but a more detailed one for the simulation of the
system.

The optimizer module contains the implementation of the solution
method and of the optimizer for the NMPC problem. For example in
the case of a simultaneous NMPC approach it contains the algorithm
for the discretization of the dynamics so that a Nonlinear Programming
Problem (NLP) is generated (using the information provided in the
model and problem description module) and then passed to any
available solver (as e.g. IPOPT Wichter & Biegler, 2006) or a self-
implemented one. As a major contribution of do-mpe, a Python
template that generates the NLP resulting from the robust multi-stage
NMPC formulation (Lucia et al., 2013) is provided, or — if chosen by
the user — the NLP resulting from standard NMPC formulations. This
module also contains the controller parameters (sampling time, pre-
diction horizon, etc.).

The observer module contains an algorithm in which, given the
measurements of the plant or simulation, the states of the system are
calculated to initialize the optimizer. Standard observers such as the
Extended Kalman Filter or the Moving Horizon Estimator can be
implemented in a generalized manner so that the information of the
other modules is used and there is no need to re-implement the
observers for different models or optimizers.

The simulation module contains an integrator which can be self-
coded or interfaced with existing software such as the SUNDIALS
(Hindmarsh et al., 2005) toolbox. For a real test case, this module
contains an interface to the Input—Output device that is used for the
communication with the real plant. The implementation of the module
is application specific and is able to send the calculated control inputs
and receive the measurements from the real system.

do-mpc is built upon CasADi (Andersson et al., 2012) as a building
block for the necessary modules and interfaces. CasADi is a tool for

Download English Version:

https://daneshyari.com/en/article/5000396

Download Persian Version:

https://daneshyari.com/article/5000396

Daneshyari.com

https://daneshyari.com/en/article/5000396
https://daneshyari.com/article/5000396
https://daneshyari.com

