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ARTICLE INFO ABSTRACT

Keywords: The aeroelastic response to time-dependent gusts or turbulence should be considered in airplane design. A
Robust robust generalized predictive control law for gust response alleviation is designed and simulated on an aircraft
Aeroelasticity model by using the real wind tunnel response and approximated gust input. Based on the open-loop response of
Gust load

an aircraft model at different test conditions, a nominal Auto Regressive (AR) model with parameter uncertainty
is identified. Singular Value Decomposition is designed to reduce the dimension of the uncertainty matrix.
Afterwards, with the identified online aeroelastic model and its uncertainty, a robust generalized predictive
control (GPC) is applied to alleviate the wing tip acceleration at all test conditions, including varying flow
velocities and varying gust frequencies. Finally, the alleviation effect of gust response at different test conditions
is estimated based on the comparison of simulated closed-loop acceleration with an experimental open-loop
one. The comparison indicates that after robust gust response alleviation control, the wing tip acceleration
response can be reduced by up to 70% under all test conditions. Remarkably, the control law is robust to the
parameter uncertainties and input uncertainties, which is applicable to the gust alleviation wind tunnel test.

Wind tunnel test
Generalized predictive control

1. Introduction

Gust response concerns with the structural response and strain in
aircraft design (Karpel, Moulin, & Chen, 2005). It is a multi-
disciplinary aeroelastic problem with the structural dynamics, aero-
dynamics and the flight dynamics (Karpel, Moulin, & Presente, 2008;
Marzocca, Librescu, & Chiocchia, 2001; Nguyen & Gatzhammer,
2015). To avoid large gust responses, gust response alleviation systems
have been designed and validated by many wind-tunnel tests (Babbar,
Suryakumar, & Strganac, 2015). In the wind tunnel test, the gust is
usually generated by biplanes with reciprocating sinusoidal motion. In
this case, the measurement in the wind tunnel test and the simulation
by computational fluid dynamics finds that the gust disturbance is also
similar as a discrete sinusoidal function (Babbar et al., 2015). The
classical proportional-integral-derivative (PID) and linear quadratic
Gauss (LQG) theories are widely used controllers for gust response
alleviation (Chen & Wu, 2009; Wu, Chen, & Yang, 2013). Considering
a parameter's perturbation, H,, optimal controller and u synthesis are
effective robust control methods to account for disturbance and
variations in the mathematical model (Dharmayanda, Budiyono, &
Kang). All of these control laws are based on a known or identified
state-space aeroelastic model, named “model-based”. Model-based
control laws are highly depending on the theoretical model. They
may fail when the parameters of a theoretical aeroelastic model are not
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accurate enough. Alternatively, a data-based control law according to
experimental input and output data can be designed. In this case, there
is no need to construct the theoretical aeroelastic model. It can prevail
over the modeling mismatch due to the strong nonlinear behavior. The
first issue for data-based control is system identification, usually with
ARMA model and least square identification algorithm (Dovetta,
Schmid, & Sipp, 2016). In fact, the data-based generalized predictive
control (GPC) is a good choice for aeroelastic active control (Martin-
Sanchez, Lemos, & Rodellar, 2012; Salcedo, Martinez, & Ramos,
2005), both for gust load alleviation and flutter suppression (Kvaternik,
Eure, & Juang, 2006; Lew & Juang, 2012). It has been applied to the
gust response alleviation simulation of an aircraft model with rigid and
elastic motions (Lew & Juang, 2012). In order to accommodate the
disturbance and uncertainties, the GPC method has been modified for
flutter suppression simulation of a Benchmark Active Controls
Technology wind-tunnel model (Salcedo et al., 2005).

The authors conducted a gust response wind tunnel test in 2011.
However, in the wind tunnel test, uncertainties are unavoidable,
including the measurement noise, flow turbulence, and gust distur-
bance (Wu, Chen et.al., 2013; Wu, Dai et al., 2013 ). To apply data-
based GPC to this wind-tunnel model, the unknown gust input and
unknown uncertainties embedded in the output data have to be tackled
with. The first problem has been solved in Ref. Dai and Yang (2015).
Hence, based on the autho rs’ former work, the uncertainty modeling of
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Nomenclature o8 gust frequency
hp, Prediction steps
GPC generalized predictive control he Command steps
AR Auto Regressive R, Q the output weighting matrices
SVD Singular Value Decomposition Y the vector of observer Markov parameters
LQG linear quadratic Gauss dg,,d;s  The gust input for the past p time steps and the future h,,
PID Proportional-integral-derivative time steps
y(k-p)  output of the AR model up,up.  The deflections of control surfaces for the past p time
dy(k-p) gust disturbance steps and the future h, time steps
u.(k-p) the deflections of control surfaces at the time step k-p YpYnp The responses for the past p time steps and the future h,
p Order of the AR model time steps
Vo flow velocity
turbulence and measurement noise is considered in this current work. d, = ag sin w;t + a1 Vp sin w;t + a, Vp? sin w;t (&)

The sections of this paper are organized as follows. In section two,
the nominal GPC control law for gust response alleviation is intro-
duced. Afterwards, considering different test conditions, an uncertainty
model is constructed and a robust GPC control law is designed to
minimizing the variance of output uncertainties. In section three, the
whole framework is validated by an aircraft aeroelastic model with
open-loop gust response in the wind tunnel test.

2. Control law design for gust response alleviation

In this section, the theory for GPC is described according to Ref.
Martin-Sanchez et al. (2012) and Ref. Kvaternik et al. (2006). The gust
input is derived and standard GPC method for gust response alleviation
is modified to adapt to different flow velocities. More details of this
theory can be found in the authors’ former work (Lew & Juang, 2012).
Afterwards, the uncertainty is introduced to several different test
conditions, including different flow velocities and gust frequencies.
Based on the identified nominal model with quantified uncertainty, a
robust GPC is designed not only to alleviate the predicted response of a
nominal AR model but also to alleviate the variance of the predicted
response due to uncertainty.

2.1. Gust response alleviation under different test conditions

The significant feature for GPC method is to identify an Auto
Regressive (AR) model based on the open-loop input and output data
(Kvaternik et al., 2006). It is similar as to deduce a theoretical model in
the model-based method. Afterwards, control command is acted on the
AR model to minimize a prediction of the system response in the
future.

More details of the standard GPC method for gust response
alleviation is seen in the authors’ former work, see Ref. Dai and Yang
(2015). Here, only some important expressions are given, which is
convenient to understand for robust GPC method.

When an external excitation exists, a time-invariant multi-input-
multi-output Auto Regressive model can be written as (Kvaternik et al.,
2006; Dai and Yang, 2015):

yk) = oqyk — 1) + ary(k — 2)+...+o,y(k — p)
+ Bouc(k) + Puctk — D+...+P,u (k — p) + 1dg(k)
+dy(k — D+...4+7,dy(k — p) &)

where integer p is called the model order. y(k-p) is the output of the
model, and dg(k-p) is the gust disturbance on the aircraft model in the
wind tunnel test. u.(k-p) is the deflections of control surfaces at the
time step k-p. Gust response in the wind tunnel test is excited by a
sinusoidal moving gust generator (Wu, Chen et al., 2013). In order to
express the gust disturbance at different flow velocity and different
sinusoidal frequency, the gust disturbance is written as a polynomial
function

where ag, a; and a, are the constant polynomial coefficients. To
combine this expression for gust disturbance with the AR model in
Eq. (1), the one gust input is augmented to three. They represent the
constant gust, the linear gust with flow velocity and the quadratic gust
with flow velocity, respectively. The expression is

T
d, (k) = [sin w;t (k), Vo sin ;1 (k), V2 sin w;t (k) :I 3)
Until now, the decomposed gust disturbance is already known.
Moreover, the response y and the deflection of control surfaces u,. are
measured by the data acquisition system in the wind tunnel test.
Hence, the inputs and outputs in Eq. (1) are known experimental open-
loop data. Then the standard AR model in Eq. (1) can be rewritten as a
regressive form

Y=YV @

where Y = [y(0), y(1),...,y(l — 1)] and Vis formed from the time series
of u.d; and y. The expression for matrix V is shown in Ref. Dai and
Yang (2015). Denote Y as the vector of observer Markov parameters to
be identified. Associating it with Eq. (1), Y is composed of

Y=[% Bo 1 By v 7, By 2 - ¥, B, )] (5)

The solution of Y is calculated by employing a least square
algorithm. That is,

Y = yVt = yVI[vyIT! (6)

After the parameters of the AR model at the k time step in Eq. (1)
are identified according to the pastltime steps, the second step for GPC
method is to design a control law. Assume the control law is switched
on from the k+1 time step. The deflection of the control surface is still
denoted as u,. Similar as the AR model in Eq. (1), in the future h;, time
steps, the response of the future time step j can also be represented as a
linear combination of three parts. Those are the response in the future j
time steps and in the last p time steps, the deflection of control surface
u, in the future h. time steps and in the last p time steps, and the gust
disturbance in the future j time steps and in the past p time steps. The
regressive relationship for the future predicted response is written as

Yk+)=alyk—1+))+afytk =2+ )+ . +ajyk —p+))
+ Ptk + ) + Pouc(k = 1+ Pto.4fluc (k) + frue(k = D+ 4+ uc (k
-
+ ptta (k + ) + Youa k= 1+ Dty ua () + 7 ug (k= D4y ]ug (k
-pr)
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Letting j in Eq. (7) range over the set of values j=1, 2, ..., hy,~1, the
resulting equations can be assembled into a multi-step output predic-
tion equation. That is,
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