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a b s t r a c t

Model-based decision support could be used to tailor insulin treatment to patients suffering from stress
hyperglycemia, while avoiding hypoglycemia. This work combines a previously published glucose and
insulin model with a subcutaneous insulin delivery model, herein simplified using Markov Chain Monte
Carlo optimization and Kullback–Liebler distance, to capture fast-acting and regular insulin using two
shared and one type-specific fitted parameter. Glucose data from a critical care population (N¼48) re-
ceiving subcutaneous insulin are fit to within finger stick glucose measurement error of 5% using a
regularized, time-varying parameter. The resulting virtual patient cohort provides a basis on which
automated insulin delivery systems can be tested.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stress hyperglycemia occurs frequently in critical care patients
and many of the harmful repercussions may be mitigated by
maintaining glucose within a glucose target zone (GTZ) using in-
sulin and glucose administration. Since the landmark publication
of the first Leuven study in 2001 (Van den Berghe et al., 2001),
showing a decrease in mortality from 8% to 4.6% in over 1500
patients where a GTZ was maintained, there have been many at-
tempts to create improved paradigms for treatment of stress hy-
perglycemia (Krinsley, 2004; Preiser, Devos, & Van den Berghe,
2002). Despite the literature supporting a GTZ (Umpierrez et al.,
2002), several follow-up studies to the 2001 Leuven study showed
limited benefit: morbidity but not mortality reduction in the case
of the Leuven follow-up study in 2006 (Van den Berghe et al.,
2006), or no change in outcome whatsoever as seen in both Glu-
control (Preiser et al., 2009) and CREATE-ECLA (Mehta, 2005). The
waning potential for controlling stress hyperglycemia was ex-
acerbated in 2009 when a multicenter prospective study (The
NICE-SUGAR Study Investigators, 2009) of over 6000 patients

showed an increase in mortality in the group receiving intensive
insulin treatment. Retrospective analysis of the NICE-SUGAR study
(Finfer, 2012) indicates that improved outcomes from glycemic
control are overwhelmed by the increased risk of hypoglycemia
and the accompanying increase in mortality associated with hy-
poglycemia (Hermanides et al., 2010; Krinsley & Grover, 2007),
when aggressive glucose control is employed. Inconsistencies in
glycemic control protocols (Wilson, Weinreb, & Hoo, 2007), as well
as variation in GTZ outcomes for different ICU subpopulations
(Hirasawa, 2009; Tiruvoipati et al., 2012; Whitcomb, Pradhan,
Pittas, Roghmann, & Perencevich, 2005), has contributed to the
mixed success of GTZ and subsequent disagreement regarding
treatment protocols using insulin in the ICU (Marik & Preiser,
2010; Parsons & Watkinson, 2007).

A more accurate, personalized treatment that is tailored to an
individual may significantly improve patient outcome. The most
promising method to achieve better control using a personalized
strategy is through the use of a model-based decision support
system (DSS), wherein a mathematical patient model is coupled
with a controller and user interface that provides for closed-loop
control under the supervision of a clinician. Such systems have
been extensively investigated for use in managing Type 1 diabetes
(Battelino et al., 2015; Breton et al., 2012; Russell et al., 2012;
Wilinska & Hovorka, 2014). A critical aspect of a DSS is accurate
understanding and modeling of the various underlying
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mechanisms leading to stress hyperglycemia, as increased biolo-
gical resolution and more accurate modeling is a critical compo-
nent of control (Morari, 1989). Creating a decision support system
with semi-automated control architecture allows for GTZ con-
sistency across many different ICUs, thereby reducing variability in
treatment implementation. Decision support systems have shown
promising results in the critical care population (Eslami, Abu-
Hanna, Jonge, & Keizer, 2009; Leelarathna et al., 2013), however,
much of the error and subsequent failure of control comes from
the failure to resolve inter- and intra-patient variations in glucose
dynamics following insulin administration. A predictive model of
glucose dynamics following insulin delivery with a small number
of fitted parameters provides a parameter-centric way to quantify
patient variability.

Stress hyperglycemia and its accompanying deleterious effects
are primarily treated via insulin infusion. Subcutaneously injected
insulin is a less invasive form of delivery used preferentially when
patients are deemed stable enough to transition from intravenous
administration in the ICU. Therefore, a control-relevant, popula-
tion-based mathematical model that describes the patient-scale
dynamics of subcutaneously administered insulin for multiple in-
sulin types is the focus of this work. While several mathematical
models have been proposed to describe subcutaneous insulin de-
livery (Nucci & Cobelli, 2000; Wilinska et al., 2005; Wong et al.,
2008), the present focus is a low-order (state and parameter di-
mension) model that was readily tailored to individual patients by
changing a small number of practically-identifiable model

parameters based on readily available clinical data. Previously
published models of subcutaneous insulin (Nucci & Cobelli, 2000;
Wilinska et al., 2005; Wong et al., 2008) also tend to use different
mathematical structures for each type of infused insulin (e.g., ra-
pid-acting, regular, lente, etc.). The present work included regular
and rapid-acting insulin types, and focused on constructing a
single-structure model with parameters specific to insulin-type.

To build a low-order, practically identifiable subcutaneous in-
sulin model, a previously reduced model (Vilkhovoy, 2014), ori-
ginally selected from a literature review of subcutaneous insulin
models (Wilinska et al., 2005), was further analyzed using pub-
lished human data (Hedman, Lindstrom, & Arnqvist, 2001; Krae-
gen & Chisholm, 1984; Kobayashi et al., 1983; Plank et al., 2002).
The model was fit using a Markov Chain Monte Carlo (MCMC)
parameter search to provide posterior distributions of the model
parameters. Finally, the reduced model of subcutaneous insulin
delivery was validated with patient data from an intensive care
clinical database to construct a virtual patient cohort for in silico
analysis and potential use in control system design.

2. Methods

2.1. Insulin absorption model and reduction

In our earlier work (Vilkhovoy, 2014), a subcutaneous insulin
absorption model from literature (Wilinska et al., 2005) was

Fig. 1. Reduction of the originally published model by Wilinska et al. (2005) as described in Vilkhovoy (2014) with the addition of panel D showing the final model
developed herein.
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