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a b s t r a c t

Minimizing the amount of electrical stimulation can potentially mitigate the adverse effects of muscle
fatigue during functional electrical stimulation (FES) induced limb movements. A gradient projection-
based model predictive controller is presented for optimal control of a knee extension elicited via FES. A
control Lyapunov function was used as a terminal cost to ensure stability of the model predictive control.
The controller validation results show that the algorithm can be implemented in real-time with a steady-
state RMS error of less than 2°. The experiments also show that the controller follows step changes in
desired angles and is robust to external disturbances.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An upper motor neuron disease or disorder impairs an in-
dividual's ability to perform functional movements, such as
standing, walking, reaching, and grasping. Functional electrical
stimulation (FES) is the application of low-level electrical current
to the nerves that innervate the muscles to cause functional limb
motion. FES has the potential to restore limb movements in in-
dividuals with corticospinal impairments. For example, by stimu-
lating specific muscle groups in an appropriate sequential manner
a walking motion can be achieved (Bajd, Kralj, Turk, Benko, & Šega,
1983; Granat, Ferguson, Andrews, & Delargy, 1993; Hardin et al.,
2007; Kralj & Bajd, 1989; Kobetic, Triolo, & Marsolais, 1997; Mar-
solais & Kobetic, 1987). Most FES devices, such as the Parastep
system (Klose et al., 1997) (Therapeutics Inc.), use electrodes
placed on the surface of the skin (transcutaneous electrodes) to
enable paraplegics to achieve standing and walking. However, this
causes the muscles to fatigue more rapidly than normal, volitional
muscle contractions. Muscle fatigue is the decline in the ability of a
muscle to produce a force, and typically occurs due to fatigue of
the nervous system or metabolic fatigue. In the case of transcu-
taneous stimulation the manner in which the muscle fibers are
recruited differs from how muscle fibers are recruited during a
natural, volitional contraction that causes FES-induced muscle
contractions to result in muscle fatigue occurring at a significantly
more rapid rate. There are two theories as to how the muscle

fibers are recruited due to the application of FES, and why it causes
rapid muscle fatigue. The first theory is that the muscle fibers are
recruited in an inverse manner of Henneman's size principle
(Mendell & Henneman, 1971), in other words FES induced con-
tractions recruit the larger motor units (large force and fatigue
rapidly) first and then the smaller motor units (low force and fa-
tigue resistant). The second theory is that FES inherently recruits
muscle fibers in a repeated and non-selective manner (Bickel,
Gregory, & Dean, 2011), which means that unlike volitional con-
tractions that recruit according to the size principle FES has no
control over the motor units that are recruited. Regardless of
which of these theories are correct, it is apparent that the rapid
onset of muscle fatigue greatly limits the duration for which FES-
based devices can be used. Error-based feedback control of FES
(Ajoudani & Erfanian, 2009; Alibeji, Kirsch, Farrokhi, & Sharma,
2015; Sharma, Bhasin, Wang, & Dixon, 2011, 2009) can compen-
sate for lower force production, due to muscle fatigue, by in-
creasing the amplitude or frequency of electrical stimulation.
However, increasing amplitude or frequency of stimulation can
further aggravate the rate at which muscle fatigue occurs.

Recent advances in hybrid powered walking orthosis (Farris,
Quintero, & Goldfarb, 2011, 2014), or use of orthosis or an exos-
keleton (Dollar & Herr, 2008) in general, can reduce stimulation
duty cycle of FES because orthosis can be used to share or reduce
stimulation of certain muscles during walking. However, stimu-
lation of muscles when orthosis is not employed (e.g., during
swing phase of FES þ passive orthosis-based walking, Sharma,
Mushahwar, & Stein, 2014) or during shared control between a
powered orthosis and FES (del-Ama, Gil-Agudo, Bravo-Esteban,
Perez-Nombela, Pons, & Moreno, 2015; Ha, Murray, & Goldfarb,
2015, 2012; Quintero, Farris, Durfee, & Goldfarb, 2010, 2012) is still
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a significant problem. Optimal control techniques can be used to
produce the minimum amount of stimulation that is required to
create a desired limb motion, thus reducing muscle fatigue. In
Popović, Stein, Oğuztöreli, Lebiedowska, and Jonić (1999) and
Sharma et al. (2014) optimizations of musculoskeletal gait models
were used to compute the minimum amount of stimulation re-
quired to produce a gait motion. The computed stimulation pat-
terns can be applied in open-loop control to reproduce the desired
gait. However, open-loop optimal control techniques are not ro-
bust to disturbances or modeling errors due to the lack of feed-
back. In Wang, Sharma, Johnson, Gregory, and Dixon (2013) a PD
controller with an adaptive inverse optimal controller was used to
control knee extension through FES. This robust technique in-
corporates error-based feedback control with a neural network
that compensates for uncertainties in the musculoskeletal model.
However, this technique did not solve the optimal control problem
of an a priori cost function.

Unlike inverse optimal control, model predictive control (MPC)
can solve the optimal control problem given an a priori cost
function. Also, unlike open-loop optimal control techniques, MPC
uses feedback that makes it more robust to disturbances. An op-
timal control-based controller when implemented runs in open
loop because control inputs are computed for infinite horizon.
MPC (also known as receding horizon control) uses a mathema-
tical model of a system to predict how it will behave over a finite
time horizon. Then by minimizing a user-defined cost function,
control signals over the finite time horizon are numerically com-
puted. The current state of the system is measured at each discrete
time step of the control, which MPC uses as an initial condition for
the next horizon. These initial conditions also act as feedback for
the control. However, only the first element of the computed op-
timal control sequence is implemented on the system. In the next
iteration the measured state is updated, the prediction horizon is
shifted one time step forward, and the procedure is repeated.

MPC has been proposed for the control of FES for FES-assisted
standing in Esfanjani and Towhidkhah (2005) and for drop foot
correction in Benoussaad, Mourad, Mombaur, Katja, and Azevedo-
Coste (2013). In Esfanjani and Towhidkhah (2005) MPC was si-
mulated on a musculoskeletal model of the lower extremities and
torso to track trajectories that minimize joint torque and jerk,
enabling the model to make a sit-to-stand transfer. In Benoussaad
et al. (2013) MPC was used in simulations on a musculoskeletal
model to compute stimulation to the tibialis anterior muscle that
minimizes stimulation and ground clearance of the foot during a
step. The nonlinear dynamics of the musculoskeletal system and
time-varying muscular response to FES makes MPC of a muscu-
loskeletal system challenging. In Mohammed, Poignet, Fraisse, and
Guiraud (2012) MPC was coupled with an input–output feedback
linearization controller and simulated on FES control of knee ex-
tension. The input–output feedback linearization controller was
used to cancel out the nonlinear dynamics of the musculoskeletal
systems, thus making the optimal control problem simpler to
solve. MPC was then used to control the linearized system instead
of the nonlinear system, which resulted in computation times less
than 20 ms in simulations. Therefore, the controller developed in
Mohammed et al. (2012) can potentially be applied for real-time
MPC of FES with a control frequency of no more than 50 Hz.
However, its experimental verification remains to be seen.

In this paper, a nonlinear MPC (NMPC) algorithm that controls
a nonlinear musculoskeletal system driven via FES is presented.
The work presented in this paper is an expansion on the results
presented in Kirsch et al. (), which only presented preliminary
results for one participant. A gradient projection method was used
to solve the optimal control problem, which has sufficiently fast
computation times to facilitate real-time implementation of NMPC
(Graichen & Käpernick, 2012; Käpernick & Graichen, 2014). This

paper also presents a musculoskeletal model with muscle activa-
tion dynamics and a procedure for estimating the subject specific
parameters of the model that can be used for the implementation
of NMPC of FES for knee extensions. Simulations and experimental
results obtained from 3 able-bodied individuals illustrated that the
NMPC method can be used to control knee extension via FES with
approximately 2° of steady-state RMS error. The NMPC algorithm
was also shown to be robust to impulsive disturbances during the
knee regulation experiments. Because NMPC is an optimal control
technique it may reduce the amount of stimulation required to
produce a desired motion, thus reducing the effects of FES-induced
muscle fatigue. Potentially, the proposed NMPC method may
benefit FES-based gait restoration devices by increasing walking
durations.

2. Leg extension neuroprosthesis model

The leg extension dynamics during FES can be described as

θ τ τ¨ + − = ( )J G , 1p ke

where θ θ θ̇ ¨ ∈, , are the angular position, velocity, and accelera-
tion of the lower leg (shank and foot) relative to equilibrium as
illustrated in Fig. 1, J is the moment of inertia of the lower leg, and

θ θ θ( ) = ( + )G mgl sinc eq is the gravitational torque. In the gravita-
tional torque m is the mass of the lower leg, g is gravitational
acceleration, lc is the distance from the knee joint to the center of
mass, and θeq is the equilibrium position of the lower leg relative
to vertical as illustrated in Fig. 1. The passive musculoskeletal
torque of the knee joint, τ θ θ( )̇,p in (1), is modeled as

τ ϕ ϕ ϕ= ( − ) + ̇ + − ( )ϕ ϕd d d de e , 2p
d d

1 0 2 3 54 6

where the anatomical knee joint angle and angular velocity,
ϕ ϕ ̇ ∈, , are defined as ϕ θ θ= − −π

eq2
and ϕ θ̇ = − .̇ The para-

meters di ( = [ − ])i 1 6 and ϕ0 are subject specific parameters that
model the stiffness and damping of the knee joint. The exponential
terms in τp model hyperextension and hyperflexion of the knee
joint.

The torque produced by the muscles due to an FES induced
muscle contraction, τ θ θ( ̇ )a, ,ke ke , is modeled using torque–length
and torque–velocity muscle relationships as

τ ϕ ϕ ϕ= ( + + )( + )̇ ( )c c c c a1 , 3ke ke2
2

1 0 3

Fig. 1. This knee extension neuroprosthesis uses electrical stimulation of the
quadriceps muscles to elicit a knee extension. The angle θ is the angle of the lower
leg relative to the equilibrium position of the lower leg, and the angle ϕ is the
anatomical knee joint angle.
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