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Abstract

Interfacial damage nucleation and evolution in reinforced elastomers is modeled using a three-dimensional updated Lagrangian finite
element formulation based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behavior. The progres-
sive failure of the particle–matrix interface is modeled by a cohesive law accounting for mode mixity. The meso-scale is characterized by a
unit cell, which contains particles dispersed in a homogenized blend. A new, fully implicit and efficient finite element formulation, includ-
ing consistent linearization, is presented. The proposed finite element model is capable of predicting the non-homogeneous meso-fields
and damage nucleation and propagation along the particle–matrix interface. Simple deformations involving an idealized solid rocket pro-
pellant are considered to demonstrate the algorithm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With examples ranging from automobile tires to solid
propellants, particle-reinforced elastomers play an impor-
tant role in a wide variety of engineering applications and
the modeling of their constitutive response continues to
be a long-standing research topic. The complexity of the
modeling is associated with the combination of a large
set of sometimes competing physical processes taking place
at various length scales: large deformations of the quasi-
incompressible elastomeric matrix, large stiffness mismatch
between the matrix and the reinforcing particles, non-linear
viscoelastic response of the elastomer, Mullins hysteretic
effect under cyclic loading, particle debonding, void
growth, matrix tearing, inter-particle interaction, etc.

The number and complexity of these phenomena have
led most of the modeling efforts reported in the literature
to rely on homogenized continuum models to capture some
of these key features of the mechanical response. For
example, Bergstrom and Boyce [2] have proposed a dual-
network model to predict the non-linear viscoelastic
response of carbon-black reinforced rubbers, with empha-
sis on capturing the large deformation and Mullins effects.
Drozdov and Dorfmann [8] also used the network theory
of rubber elasticity to capture the non-linear equilibrium
response of filled and unfilled elastomers. Most theories,
however, are based on phenomenological continuum mod-
els of various features of the constitutive response of filled
elastomers. Examples include Dorfmann and Ogden’s ana-
lysis of the Mullins effect [7], Kaliske and Rothert’s work
on the internal friction [13] and Miehe and Keck’s stress
decomposition model of damage evolution [25].

Another complexity is associated with the numerical
treatment of these materials. As mentioned earlier, the
matrix material is nearly incompressible and a special
numerical formulation has to be employed. A mixed finite
element method that interpolates the pressure and displace-
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(P.H. Geubelle).

URL: http://www.csar.uiuc.edu/~matous/ (K. Matouš).
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ment fields separately is required. For Galerkin methods,
the choice of interpolation functions must satisfy the
Babuška–Brezzi condition (see, e.g., [4]) in order to achieve
uniqueness, convergence and robustness. Without balanc-
ing the interpolations properly, significant oscillations in
the solution typically result. Considerable effort has been
devoted in recent years to develop novel numerical tech-
niques that give stable solution [23,37,5]. Especially, stabi-
lized theories, where Babuška–Brezzi stability condition is
circumvented, have been recently explored [16,17,27].

The primary focus of this research is to develop a com-
putational model of damage evolution under high strain
levels in highly filled elastomers such as solid propellants
and other energetic materials, which are composed of par-
ticles of varying sizes (typically a bimodal distribution)
needed to achieve a high energetic content. Various
‘‘homogenized’’ models have been proposed to simulate
the damage evolution: see, for example, the analysis
presented by Farris [11], Schapery [33], Ha and Schapery
[14], Simo [36], Ravichandran and Liu [30]. Other
approaches rely on micromechanics [22,18,38].

In these highly filled elastomers, experimental obser-
vations have shown that the failure process is primarily
driven by the debonding of the larger particles, with the
smaller particles playing the role of stiffener for the matrix
[1,29]. Based on these observations, Zhong and Knauss
[44,45] have used a cohesive finite element approach to sim-
ulate the progressive particle debonding process in simple
2D representative volume elements (RVE) composed of a
few large rigid particles embedded in a non-linear elastic
matrix. The emphasis of their work was to capture the
effect of the inter-particle interaction and the influence of
the interface cohesive properties on the evolution and
stability of the dewetting process.

Building on Zhong and Knauss’ work, we present a
numerical study where the key emphases are: (1) the devel-
opment and implementation of a 3D model under large
deformations; (2) the accurate and efficient treatment of
the near-incompressibility of the matrix through a stabi-
lized finite element formulation; (3) the consistent lineariza-
tion of the set of non-linear equilibrium equations leading
to a very efficient algorithm.

In this paper, the interfacial damage is modeled by cohe-
sive elements [28,31,12,43] and the stabilized Petrov–Galer-
kin formulation is used to describe the large incompressible
deformations of a matrix [16,17]. The formulation and
implementation of the mathematical theory of homogeni-
zation in finite strains is presented in paper by Matouš
and Guebelle [24]. The presented work can also serve as
a computational component in the embedded multiscale
scheme proposed by Oden [26] for example.

The paper is organized as follows: In Section 2, we sum-
marize the basic kinematic, equilibrium and constitutive
relations that describe the problem, including the cohesive
model characterized by an exponential traction–separation
law that accounts for mode mixity. A stabilized variational
framework based on an updated Lagrangian formulation is

presented in Section 3, together with the finite element
formulation and its consistent linearization. Section 4
describes constitutive laws characterizing the mechanical
behavior of individual constituents. A few comments about
the non-linear solver and an adaptive time stepping proce-
dure are presented in Section 5, together with a few illustra-
tive example involving the uniaxial loading of simple unit
cells composed of one and four reinforcing particles.

The symbolic notation adopted herein uses upper case
boldface italic and lower case boldface Greek letters,
e.g., P and r for second-order tensors. The trace of the
second-order tensor is denoted as tr(A), and the tensor
operations between two second-order tensors S and E are
indicated as SE for a tensor contraction (a second-order
tensor) or S:E for the scalar product (a double contraction).

2. Finite strain irreversible cohesive law

Consider a hyperelastic body in an initial configuration
B0 � R3, which undergoes the motion /(X, t) and let
F(X, t) = $/(X, t) be the deformation gradient at the cur-
rent time t 2 Rþ with the Jacobian given by J = det(F).
Here X 2 R3 designates the position of a particle in the ref-
erence configuration B0 � R3 in the Cartesian coordinate
system. Suppose now that the body is divided by a cohesive
surface S0 with a unit normal N0 (Fig. 1). For the sake of
simplicity, we assume that the cohesive surface partitions
the body into two subbodies B�0 , occupying the plus and
minus sides of the cohesive surface, S�0 , respectively.

Next, let x = /(X,t) be the spatial coordinates of a par-
ticle and xn+1 = X + un+1, where un+1 = un + u denotes the
incremental displacement field. Here and henceforth, right
subscripts n and n+1 indicate times tn and tn+1, respec-
tively. Using an updated Lagrangian formulation and
adopting the multiplicative decomposition of the deforma-
tion gradient, we arrive at
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Fig. 1. Kinematic decomposition of deformation gradients.
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