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a b s t r a c t

In this paper, a novel analysis method for iterative learning control (ILC) algorithms is presented. Even
though expressed in the lifted system representation and hence in the time-domain, the convergence
rate as a function of the frequency content of the error signal can be determined. Subsequently, based on
the analysis method, a novel ILC algorithm (F-ILC) is proposed. The convergence rate at specific fre-
quencies can be set directly in the design process, which allows simple tuning and a priori known
convergence rates. Using the F-ILC design, it is shown how to predict the required number of iterations
until convergence is achieved, depending on the reference trajectory and information on the system
repeatability. Numerical examples are given and experimental results obtained on an internal combus-
tion engine test bench are shown for validation.

& 2016 Published by Elsevier Ltd.

1. Introduction

Learning from experience is important for humans to improve
skills and abilities for a variety of tasks in everyday life. Observa-
tions of errors are used to improve one's performance for the next
time. In technical systems, for repetitive tasks, iterative learning
control (ILC) algorithms constitute a learning process. The devia-
tion of the system output from a specified reference trajectory is
calculated after every iteration (trial). The error is used to calculate
a modified input signal for the next iteration to improve the sys-
tem performance. While non-learning controllers keep repeating
the same error, ILC reduces the error in each iteration as the
controller learns which input signal leads to the smallest possible
error.

Iterative Learning Control methods are used for a variety of
control processes in research and industry such as chemical batch
reactors (Lee, Lee, & Kim, 2000; Liu, Gao, & Wang, 2010), high-
performance maneuvers of quadrocopters (Hehn & D'Andrea,
2013; Schoellig, Mueller, & D'Andrea, 2012), 3D printing (Bolder,
Oomen, & Steinbuch, in press), suppression of residual vibrations
(van de Wijdeven & Bosgra, 2008), and industrial robots (Maha-
mood & Pedro, 2011; Hakvoort, Aarts, van Dijk, & Jonker, 2008). For
further areas of application, the reader is referred to the recent
survey papers by Ahn, Chen, and Moore (2007), Bristow, Tharayil,
and Alleyne (2006), Wang, Gao, and Doyle (2009), and Xu (2011).

There exist several methods to design ILC algorithms that are
based in the time-domain or in the frequency domain. In addition
to that, a 2D system representation for design and analysis is also
possible as in Hladowski et al. (2008), Hladowski et al. (2010), and
Bolder et al., in press.

Convergence of the algorithms has been addressed in the ma-
jority of publications since the first publications of ILC in 1984
(Arimoto, Kawamura, & Miyazaki, 1984). The convergence rate is
defined as the ratio of the errors of two successive iterations under
a given norm. In Tang, Cai, and Huang (2000), Zuo, Zhu, and Cai
(2009), Oh and Lee (2014), Owens and Hätönen (2005), Bristow
et al. (2006), Arif, Ishihara, and Inooka (2003), Moore, Chen, and
Ahn (2006) the correlation between the learning gain(s), i.e. tun-
ing parameter(s) of the ILC algorithms, and the convergence rate is
discussed, but only qualitatively and/or an upper bound is given.

Amann, Owens, and Rogers (1996) derive a gradient type al-
gorithm that is based on optimization. The authors state that the
convergence rate is initially much faster than in later iterations,
but they offer no explanation for this observation. In Ghosh and
Paden (2002), it is qualitatively stated that the pseudo-inverse
based learning approach leads to a faster convergence of low-
frequency components and a slow convergence of high-frequency
components of the error.

If the learning process is designed in the frequency-domain, the
information that can be extracted from the algorithm is different
from that obtained if the learning is designed in the time-domain.
The authors Kim, Zou, and Su (2008) use a frequency dependent
learning gain (iterative coefficient) to quantify the frequency range
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of convergence but do not comment on the convergence rate. In
Goh (1994) a frequency-domain method is presented with which
the convergence rate of one single frequency can be set directly.
The convergence rate for all other frequency components in the
error signal is also determined by this choice. Freeman, Lewin, and
Rogers (2007) analyze the convergence rate of frequency-domain
iterative learning algorithms as a function of the frequency.
Longman (2000) analyzes the growth or decay of single frequency
components of the error signal, and this analysis is done in the
frequency domain.

Typically, the articles mentioned discuss the fact that the con-
vergence rate can be altered by increasing or decreasing some
tuning parameter(s). Often, an upper bound for the convergence
rate is given, but a quantitative description of the convergence rate
is usually lacking. For frequency-domain ILC algorithms, the
method mentioned in Freeman et al. (2007) provides an insight
into the frequency-dependent convergence behavior of an algo-
rithm. In Dinh, Freeman, and Lewin (2014), Owens (2016), the
convergence properties of gradient and norm-optimal ILC are
discussed. Dinh et al. (2014) provide bounds for the error reduc-
tion after j iterations, whereas in Owens (2016), a connection is
described between approximate eigenvectors and the convergence
rate of single frequency components in the error signal. However,
neither of these two papers mention whether the analyses are also
applicable to lifted system matrices of more general ILC design
procedures.

This paper contains two novelties. First, an analysis method is
introduced that offers an insight into the frequency-dependent
convergence rate that is achieved using various ILC algorithms in
the time-domain. The convergence rate depends on the system
under investigation, the tuning parameters of the ILC algorithm, as
well as on the given reference trajectory. The method allows the
convergence rate to be estimated as a function of the frequency
content of the reference trajectory. It is applicable to any ILC al-
gorithm in the lifted system representation. Non-causal filters,
expressed in matrix notation, are presented that are based on the
discrete Fourier transform. The frequency characteristics of the
filters can be chosen freely. This type of filter is subsequently used
for the design of a new ILC algorithm (F-ILC), which is the second
novelty. With the F-ILC algorithm a monotonic convergence is
guaranteed, and the frequency-dependent convergence rate can be
specified in the design process. This is an advantage in view of the
fact that no further analysis is necessary to determine the behavior
of the system concerning stability and convergence properties.

The paper is structured as follows: After an overview of the
system description, the conditions for stability and monotonic
convergence of ILC algorithms are presented. The popular Q-ILC
algorithm is then illustrated with a numerical example. Based on
the simulation results, the method is presented to determine the
frequency-dependent convergence rate in the time-domain re-
presentation. Subsequently, a so-called frequency matrix is in-
troduced and its link to the discrete Fourier transform is explained.
The properties of the matrix are used for the design of the F-ILC
algorithm. Numerical and experimental results for this algorithm
are shown. The experiments are carried out on an internal com-
bustion engine test bench. The conclusions are presented in the
last section.

2. System description

A discrete, linear, and time-invariant (LTI) SISO system Σ( )z can
be described by

( + ) = ˜ ( ) + ˜ ( ) ( )x k Ax k Bu k1 1

( ) = ˜ ( ) ( )y k Cx k 2

where k is the discrete-time index. Fig. 1 shows the structure of
the control system. The controller is denoted by C(z) while the
complementary sensitivity is denoted by P(z ).

Considering finite discrete signals of length N, the following
time history vectors are defined

= [ ( ) ( ) ⋯ ( )] ( )y y y y N1 2 3j j j j
T

= [ ( ) ( ) ⋯ ( )] ( )y y y y N1 2 4d d d d
T

= [ ( ) ( ) ⋯ ( − )] ( )u u u u N0 1 1 5j j j j
T

˜ = [ ˜( ) ˜( ) ⋯ ˜( − )] ( )d d d d N0 1 1 6T

where j is the iteration index (Bristow et al., 2006; Phan, Longman,
Panomruttanarug, & Lee, 2013). The signals yj and yd are shifted by
one time step to account for the one-step delay of the plant. The
iteration-invariant reference is denoted by yd, the current iteration
ILC control input by uj, and the output by yj. In the 0th iteration

= [ ⋯ ]u 0 0 0 0 T
0 is used. The controller C(z) generates the

signal ujc within the iteration. However, this signal is not relevant
for ILC as only the input and output of P(z) must be known. The
signal d̃ captures iteration-invariant disturbances and initial con-
ditions of the system (Phan et al., 2013). Using a matrix P defined
as
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the system dynamics can be captured by the static equation

= ( + ) + ( )y P y u d, 8j d j

with the vector = ( ) ˜d S z d and where the variable S(z) is the sen-
sitivity of the control loop. The Markov parameters of the system
can be found in the first column of P (Hespanha, 2009). This sys-
tem representation is often referred to as lifted system re-
presentation (Bristow et al., 2006; Janssens et al., 2012; Schoellig
et al., 2012). The error vector of the current iteration is defined as

= − ( )e y y . 9j d j

In the remainder of the paper the lifted system representation is
used. In this notation, a general first-order ILC update law can be
written as

( )= + ( )− −u Q u Le , 10j j j1 1

where L is the learning gain matrix and Q is the lifted-system
matrix of a filter. The goal of using ILC algorithms is to design a
learning gain matrix L such that the algorithm is asymptotically
stable and the error converges monotonically.

Fig. 1. Structure of the control system.
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