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a b s t r a c t

This paper presents a cooperative adaptive cruise controller that controls vehicles along a planned route
in a possibly hilly terrain, while keeping safe distances among the vehicles. The controller consists of two
predictive layers that may operate with different update frequencies, horizon lengths and model ab-
stractions. The top layer plans kinetic energy in a centralized manner by solving a quadratic program,
whereas the bottom layer optimizes gear in a decentralized manner by solving a dynamic program. The
efficiency of the proposed controller is shown through several case studies with different horizon lengths
and number of vehicles in the platoon.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In today's globally interconnected market, freight and passen-
ger transport have a great share in the worldwide greenhouse gas
emissions and energy consumption. In the OECD (Organization for
economic cooperation and development) countries, surface
transportation is particularly culpable, since about 35% of the total
CO2 emissions is due to surface freight. The share is expected to
raise to about 50% in the next 35 years (OECD/ITF, 2013).

Among the measures that can alleviate the impact of trans-
portation, an obvious factor is the improvement of energy effi-
ciency. It is possible to use the vehicle kinetic and potential energy
storage in favor of a more economic drive, by controlling velocity
profile, i.e., by varying the vehicle speed in a hilly terrain, while
not exceeding the maximum allowed travel time. For example,
decreasing speed when climbing uphill and building up speed
when rolling downhill is clearly preferable compared to wasting
energy at the braking pads. This behavior can be implemented
with rule-based control strategies when the topographic profile is
relatively simple. For more complex topographic profiles, with
successive hills of various shapes, model based control is the
preferred implementation, where the energy use is coordinated by
an optimal control algorithm.

The use of dynamic programming (DP) algorithm (Bellman,

1957) has been proposed in Hellström, Ivarsson, Åslund, and
Nielsen (2009) and Hellström, Åslund, and Nielsen (2010a), for
optimal control of gear shifts and vehicle acceleration of conven-
tional trucks. The algorithm is able to enforce a constraint on trip
time and achieve close to optimal fuel consumption. However, the
computation time in DP increases exponentially with the number
of dynamic states and control signals (Bertsekas, 2000). Thus, for
systems with more energy states, as in, e.g., hybrid electric ve-
hicles (HEVs), methods have been proposed that adjoin the system
dynamics to the objective, while simplifying the problem by ne-
glecting state constraints, or by approximating the discrete-gear
transmission to a continuously variable transmission (Schwarz-
kopf & Leipnik, 1977; Hellström, Åslund, & Nielsen, 2010b; van
Keulen, de Jager, Foster, & Steinbuch, 2010; van Keulen, de Jager, &
Steinbuch, 2011; Lindgärde, Feng, Tenstam, & Soderman, 2015). An
alternative approach published recently decouples the integer
from the real-valued decisions, such that gear and powertrain
mode is decided by DP, while control of energy buffers is decided
by convex optimization (Johannesson, Murgovski, Jonasson,
Hellgren, & Egardt, 2015a). For a historical overview and a com-
prehensive list of methods for optimal velocity control of both
conventional and electrified vehicles, see, e.g., (Sciarretta, Nunzio,
& Ojeda, 2015) and references therein.

An additional aspect when controlling vehicle speed is the
surrounding traffic. In Johannesson, Nilsson, and Murgovski
(2015b) a decoupled optimization approach is proposed, an ex-
tension of the method in Johannesson et al. (2015a), for optimal
velocity control of a hybrid electric truck with safety constraints
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on time headway. The proposed approach, however, does not
utilize cooperative control, which is made possible by the com-
munication possibilities of the modern intelligent transportation.
The cooperative control is also known as platooning, while the
term platoon refers to the group of vehicles at close inter-vehicle
distances.

Vast amount of scientific literature has addressed the safety
and stability of vehicle platoons, see e.g. (Levine & Athans, 1966;
Peppard, 1974; Swaroop & Hedrick, 1996; Dunbar & Murray, 2006).
These approaches typically consider a simple powertrain model
and idealized road conditions, e.g., a flat road profile. Optimal
energy management that employs aerodynamic drag reduction of
platoons, (Zabat, Stabile, Farascaroli, & Browand, 1995), to max-
imize the cumulative energy efficiency, has been studied in Bonnet
and Fritz (2000), Kemppainen (2012), Bühler (2013), Alam (2014),
Alam, Besselink, Måartensson, and Johansson (2015), Yu, Liang,
Yang, and Guo (2016) and Liang, Måartensson, and Johansson
(2016). These studies typically consider a hilly terrain and a de-
tailed powertrain model (Guzzella & Sciarretta, 2013), but they
also require tracking of a particular headway, time or distance,
which may not be optimal. Recent approaches where headway is
not explicitly penalized as long as safety is satisfied, have been
proposed in Jeber (2015), Wahnström (2015) and Nilsson, Mur-
govski, and Johannesson (2015).

This paper proposes a predictive cruise controller that decou-
ples the optimal control problem into two model predictive layers
that may operate with different model abstractions, update fre-
quencies and prediction horizons. The top layer plans the optimal
kinetic energy and time trajectories by solving a convex program
in space coordinates. Convex modeling steps are shown for two
convex formulations, a semidefinite program (SDP) and a quad-
ratic program (QP). The bottom layer plans transmission gear in a
DP by using the state and costate trajectories from the top layer.

Besides the convex modeling steps, this paper presents several
contributions. In the case of optimal cruise control of a single
vehicle, a method is proposed that extends the method from Jo-
hannesson et al. (2015a) by propagating gear decisions back to the
top layer and by applying real-time iteration sequential QP (Diehl,
2001) in order to remove possible linearization errors. The opti-
mized solution of the decoupled approach is compared to that
obtained by DP, confirming that near globally optimal solutions are
achieved. The proposed predictive cruise controller is then ex-
tended to a centralized controller for a cooperative energy man-
agement of an entire vehicle platoon by considering safety con-
straints on headway. Two different QP formulations are shown for
the top layer, a formulation with three states per vehicle, i.e. time,
speed and distance, and a reduced complexity formulation where
distance is removed from the state vector. Several case studies are
investigated, showing the dependence on travel time and aero-
dynamic drag reduction modeling. The results indicate that
keeping a constant time headway is not always optimal.

The paper is outlined as follows. Powertrain modeling and
problem formulation for a single vehicle cruise controller is pro-
vided in Section 2. The proposed predictive cruise controller with
decoupled integer and real-valued decisions is presented in Sec-
tion 3. Case studies for optimized energy management of a single
vehicle are provided in Section 4. The optimization method is
extended to cooperative energy management of a platoon of ve-
hicles in Section 5. Case studies with multiple vehicles are pro-
vided in Section 6. The paper is ended with discussions in Section
7 and conclusions and future work in Section 8.

2. Energy management of a single vehicle

Before going into formulation of the cooperative energy man-
agement problem, which is deferred to Section 5, the energy

management of a single vehicle is addressed here, without con-
sidering the surrounding traffic. The adopted control structure is
discussed and a non-convex, nonlinear and mixed-integer pro-
blem is formulated.

2.1. Predictive cruise control

Automated cruise controllers currently in production typically
employ standard feedback PID controllers that are tuned to track a
reference speed trajectory in real-time. The design of these con-
trollers is often complicated when input/state constraints are
present and when predictive information has to be incorporated.
One way to overcome the limitations, without the need to sig-
nificantly change the existing system, is to augment the system
with an additional controller that generates optimized references
or set points for the local feedback controllers, see Fig. 1.

The system with a predictive cruise control (PCC), depicted in
Fig. 1, resembles a reference governor, since predictive control is
applied to the reference trajectories rather than to the control
inputs (Bemporad & Mosca, 1998; Gilbert, Kolmanovsky, & Tan,
1995). The difference to a typical reference governor is that the
PCC in Fig. 1 does not guarantee constraints satisfaction for the
reference tracking in the local feedback controllers. Instead, con-
straints satisfaction is guaranteed only for the model used within
the PCC.

Although extracting control inputs from the PCC is not neces-
sary, the PCC still considers future control actions in order to
guarantee constraints fulfillment. The future control actions and
state/costate trajectories are a result of an optimization procedure
that is re-evaluated in a receding horizon model predictive control
(MPC) framework (Mayne, Rawlings, Rao, & Scokaert, 2000). The
length of the receding horizon has to be long enough to guarantee
a required average cruising speed, while leaving freedom for speed
variations in a hilly terrain.

The goal of this section is to propose a computationally efficient
PCC. In particular, the goal is to design a real-time implementable
controller for receding horizons with length to about 20 km. For
longer horizons that cover an entire trip, e.g. with range greater
than 100 km, the goal is to deliver a controller that is suitable for
off-line assessment of optimal energy management strategies.

2.2. Travel time and velocity constraints

Consider a vehicle driving on a planned route in a possibly hilly
terrain. In the studied scenario the vehicle does not stop or change
direction of movement. A preferred cruising speed is set by the
driver, or set automatically by a telemetry system. The preferred
speed is filtered (see Appendix A), in order to construct a reference
speed trajectory vr(s). The vehicle does not necessarily track the
reference. Instead, the vehicle speed v is allowed to vary between
two limits
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Fig. 1. Predictive cruise control (PCC) and local (feedback) controllers (LC). The PPC
generates state and costate trajectories by solving an optimal control problem over
a receding horizon. The state and costate trajectories are used as a reference for the
LC.
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