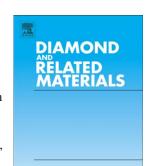
Accepted Manuscript

A facile method for the deposition of thermally stable diamond like carbon thin films *via* carbon dioxide precursor gas

Sekhar C. Ray, Gourav Bhattacharya, Mark A. Miller, Sweety Sarma, Ravi Kant Upadhay, James A. McLaughlin, Susanta Sinha Roy


PII: S0925-9635(16)30257-6

DOI: doi: 10.1016/j.diamond.2016.07.013

Reference: DIAMAT 6675

To appear in: Diamond & Related Materials

Received date: 29 June 2016 Revised date: 17 July 2016 Accepted date: 27 July 2016

Please cite this article as: Sekhar C. Ray, Gourav Bhattacharya, Mark A. Miller, Sweety Sarma, Ravi Kant Upadhay, James A. McLaughlin, Susanta Sinha Roy, A facile method for the deposition of thermally stable diamond like carbon thin films *via* carbon dioxide precursor gas, *Diamond & Related Materials* (2016), doi: 10.1016/j.diamond.2016.07.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Abstract ID: C04-1832

Submission Ref.: DIAMOND_2016_138

A facile method for the deposition of thermally stable diamond like carbon thin films via carbon

dioxide precursor gas

Sekhar C. Ray^{1,*}, Gourav Bhattacharya², Mark A. Miller³, Sweety Sarma¹, Ravi Kant Upadhay², James A.

McLaughlin³ and Susanta Sinha Roy²

¹Department of Physics, College of Science, Engineering and Technology, University of South Africa,

Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park,

Johannesburg 1710, South Africa.

²School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314, Uttar Pradesh, India.

³Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster at Jordanstown,

Shore Road, BT37 0QB, Northern Ireland, United Kingdom

Abstract

The thermal stability and tribological performance of silicon- and oxygen-incorporated diamond-like carbon

(DLC) and silicon doped-DLC films were investigated. The DLC and DLC:Si are deposited on various

(silicon, stainless steel and aluminium) substrates within the thickness range 200-400 nm by radio frequency

plasma-enhanced chemical vapour deposition (PECVD) method. Carbon dioxide (CO₂) precursor gas is

used to reduce the hydrogen content and to increase the adhesion of the films to the substrate. The X-ray

photoelectron spectroscopy, Raman spectroscopy, surface profilometry and nano-indentation are used to

study the chemical composition, microstructure, thermal stability and mechanical properties of the films. For

CO₂ precursor made DLC samples, Raman parameters did not show any significant change up to

temperature 500°C. The lowest coefficient of friction was found to be 0.298 for the DLC:Si film prepared

with CO₂ at room temperature and corresponded lowest wear rate of 1.77 x 10⁻¹⁰ mm³/Nm. The micro-

structural properties at various annealing temperature were critically analysed by monitoring graphitization

behaviour and oxidation of the film surface.

Key words: DLC, Thermal stability, Hardness

1

Download English Version:

https://daneshyari.com/en/article/5000627

Download Persian Version:

https://daneshyari.com/article/5000627

<u>Daneshyari.com</u>