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Abstract

Recent advances in medical imaging, computational methods, and biomechanics promise to enable significant improvements in engi-
neering-based decision making in vascular medicine, surgery, and training. To realize the potential of this approach, however, we must
better synthesize the separate advances, particularly those in biofluid mechanics and arterial wall mechanics. In this paper, we describe a
method for exploiting the typically small deformations experienced by arteries during the cardiac cycle while retaining essential features
of the complex nonlinear, anisotropic behavior of the wall relative to unloaded configurations. In particular, we show that the well-
known theory of small deformations superimposed on large can facilitate computations of fluid–solid interactions by exploiting methods
familiar in linearized elasticity without compromising the description of the nonlinear wall mechanics. Indeed, the theory reveals poten-
tial errors when one simply tries to employ standard linearized results straight away. For purposes of illustration, small on large results
are provided for the rabbit basilar artery and a constitutive relation for arteries recently proposed by Holzapfel and colleagues. It now
remains for future studies to implement this approach in coupled fluid–solid problems.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that hemodynamic loads on the vascu-
lature play key roles in modulating normal geometry and
properties as well as in contributing to the genesis and pro-
gression of vascular disease [1–3]. Indeed, blood flow
induced wall shear stresses are key regulators of endothelial
cell biology [4] just as blood pressure induced intramural
stresses are key regulators of vascular smooth muscle cell
and fibroblast biology [5]. Whereas advances in computa-

tional hemodynamics (e.g., [6]) and arterial wall mechanics
(e.g., [7]) have been spectacular, there remains a need for
computationally efficient and robust approaches that
model the fluid–solid interactions. Indeed, as revealed in
recent reviews [8–10], most computational biosolid
mechanics studies ignore the dynamic loading imposed
on the arterial wall by the blood whereas most computa-
tional biofluid mechanics studies either assume that the
arterial wall is rigid or that it exhibits a linear elastic behav-
ior. Because deformations of arterial walls are small during
the cardiac cycle, the use of appropriately linearized elastic-
ity in fluid–structure interaction problems can be justified,
and in fact significant progress has been made in recent
years in solving blood flow problems by assuming linear
elastic behaviors of the wall (e.g., [11,12]). Nevertheless,
there has not been much attempt to connect the linearized
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elastic response with complexities of the wall such as resid-
ual stress, anisotropy, and nonlinear behaviors that change
with smooth muscle activation or growth and remodeling.
There is, therefore, a pressing need for solutions for the
inherent fluid–solid interactions that admit the dynamical
loading and do not compromise the description of the
actual wall mechanics. Only in this way will we be able
to understand better, and thus address, the complexities
of vascular biology, physiology, and pathophysiology.

In this paper, we suggest that the theory of small defor-
mations superimposed on large can be exploited when solv-
ing coupled fluid–solid interaction problems. In particular,
this approach allows one to include the effects of residual
stress, nonlinear material behavior, anisotropy, smooth
muscle contractility, and growth and remodeling of the
arterial wall while recovering equations relevant through-
out the cardiac cycle that can be solved using methods
common to linearized elasticity. To illustrate this
approach, we use a constitutive relation proposed by Hol-
zapfel et al. [13] to fit passive data on the mechanical
behavior of the rabbit basilar artery and a constitutive rela-
tion proposed by Rachev and Hayashi [14] to simulate the
effects of changing smooth muscle tone. Using these non-
linear constitutive relations, we compute the linearized con-
stitutive relation and study changes in the structural
stiffness over the cardiac cycle. It is, of course, only the
structural stiffness of the wall that affects the hemodynamic
solutions.

2. General theory of small on large deformation

2.1. Preliminaries

Let the motion of a solid-like body B be represented by
mappings v of a particle from a reference configuration
jRðBÞ to a current configuration jðBÞ at time t, namely:

x ¼ vðX; tÞ; ð1Þ

where X and x are position vectors relative to reference and
current configurations, respectively. Moreover, let the body
occupy a configuration joðBÞ at an intermediate time to

characterized by a large strain measured from the reference
configuration. Then, let the position in the intermediate
(stressed) configuration be denoted by xo ¼ vðX; toÞ. Hence,
we can consider that a small displacement u ¼ uðxo; tÞ,
superimposed upon the large deformation, yields the ‘‘cur-
rent’’ position x at time t. The current position can thus be
written as

x ¼ xo þ uðxo; tÞ: ð2Þ

Deformation gradients associated with mappings from the
reference to the intermediate and current configurations are
thus given by

Fo ¼ ovðX; toÞ
oX

; F ¼ ovðX; tÞ
oX

: ð3Þ

The deformation gradient representing a mapping from the
intermediate configuration to current configurations is
similarly,

F� ¼ ox

oxo
¼ IþH; where H ¼ ou

oxo
: ð4Þ

The displacement gradient H can be divided into a sym-
metric part � ¼ 1

2
ðHþHTÞ and a skew-symmetric part

X ¼ 1
2
ðH�HTÞ. If H is small, � and X are identified as

the infinitesimal strain and infinitesimal rotation, respec-
tively. Regardless, gradients of the successive motions
(Fig. 1) are

F ¼ F�Fo: ð5Þ

For an isochoric motion, the material is subject to a
kinematic constraint: det F ¼ 1 in general, which reduces
to trð�Þ ¼ 0 for an infinitesimal strain. The Cauchy stress
T for an incompressible Green (hyper)elastic material can
be written as

T ¼ �pIþ T̂; T̂ ¼ FŜFT; Ŝ ¼ 2
oŴ
oC

; ð6Þ

where p is a Lagrange multiplier that enforces the isochoric
motion, C ¼ FTF is the total right Cauchy–Green tensor,
and T̂ is the deformation-dependent (or extra) part of the
Cauchy stress. For purposes herein, it is convenient to re-
late T̂ to the extra part of the second Piola–Kirchhoff stress
Ŝ, which in turn is computed directly from a stored energy
function W ¼ ~W ðFÞ, or by material frame indifference,
W ¼ Ŵ ðCÞ.

At this juncture, we recognize that although complete
analyses of arterial wall mechanics necessarily require F

to be computed relative to a suitable reference configura-
tion (e.g., a residual stress free sector obtained by introduc-
ing multiple cuts in an excised segment [5,15]), the focus of
most computational biofluid mechanical analyses is on
changes from diastole to systole. Because of the highly non-
linear material behavior of arteries, the deformation from a
suitable reference configuration to an intact diastolic
configuration is ‘‘large’’ whereas that from diastolic to

Fig. 1. Schematic view of the three primary configurations: jRðBÞ is an
unloaded reference, joðBÞ is a finitely deformed intermediate configura-
tion, and jðBÞ is a ‘‘current’’ deformed configuration achieved via a small
deformation from joðBÞ.
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