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Abstract

The aim of this work is to develop a formulation called the control volume capacitance method which can provide stabilized numer-
ical results for convective–diffusive problems. The formulation employs the control volume approach to derive an artificial capacitance
by equating heat and energy flow unsteady equations. The formulation is designed for materials that exhibit combined unsteady heat
transfer and mass transport. Here, energy and in particular thermal capacitance are related to physical (real/material) and non-physical
(non-real/mesh) quantities, respectively. The use of the control volume approach ensures that predicted temperature fields correspond
exactly with the unsteady flow energy equation and so providing an extremely stable formulation. Unsteady convective–diffusive heat
transfer is performed in the 1-D semi-infinite domain to demonstrate the applicability of the method. To validate the method, predictions
are compared against exact and popular numerical schemes.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Control volume; Capacitance; Heat; Convection; Oscillation

1. Introduction

The standard Galerkin FEM solution (called the Bub-
nov–Galerkin method) of the convective–diffusive equation
is known to yield numerical oscillation for values of the Pec-
let number grater than one [1]. A number of numerical
schemes have been proposed in order to prevent numerical
instabilities, that is, that the solution has a physical mean-
ing. In the first attempts to solve this problem the under-dif-
fusive character of the Galerkin FEM (and the analogous
central finite difference scheme) for convective–diffusive
problems was corrected by adding ‘‘additional diffusion
terms’’ to the governing equations [1,2]. The relationship
of this approach with the upwind finite difference method
[2] leads to the derivation of a variety of Petrov–Galerkin
FEM. All these methods can be interpreted as extensions

of the standard Galerkin Variational form of the FEM by
adding residual-based integral terms computed over the ele-
ment domains.

Among the many stabilization methods we name the
Upwind FEM [3,4], the Streamline Upwind Petrov–Galer-
kin (SUPG) method and the pressure stabilizing/Petrov–
Galerkin (PSPG) formulation for incompressible flows
are some of the most prevalent stabilized methods [5–9],
the Taylor–Galerkin method [10,11], the generalized Galer-
kin method [12,13], the Galerkin Least Square method and
related approaches [14–16], the Characteristic Galerkin
method [17,18], the Characteristic Based Split method
[19], the Sub-grid Scale method [20–23], the Residual Free
Bubbles method [24], the Discontinuous Enrichment
Method [25], the Streamline Upwind with Boundary Terms
method [26], the so called ‘‘shock-capturing’’ or ‘‘disconti-
nuity-capturing’’ schemes [32–36] and the Finite Calculus
(FIC) approach based on expressing the equation of bal-
ance of fluxes in a domain of finite size [37,38].
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It is interesting that many of the stabilized FEM can be
recovered using the FIC method. The FIC method has
been successfully applied to problems of convection–diffu-
sion [37–41], convection–diffusion–absorption [42,43],
incompressible fluid flow [44–47] and incompressible solid
mechanics [48,49].

Basically all the methods make use of a single stabiliza-
tion parameter which suffices to stabilize the numerical
solution along the velocity (streamline) direction. The com-
putation of this stabilization parameter, known as ‘‘s’’, for
multidimensional problems is usually based on extensions
of the optimal value of the parameter for the simpler 1-D
case. It involves a measure of the local length scale and
other parameters such as the element Reynolds and Cou-
rant numbers. Various element lengths and s’s were pro-
posed starting with those in [5,6,50,51], followed by the
one introduced in [36], and those proposed in the subse-
quently reported SUPG-based methods. Specific attempts
to design the stability parameter for multidimensional
problems in the context of the Petrov–Galerkin formula-
tion have been recently reported [27–31].

Among the most popular stabilize classical finite element
methods for convective–diffusive problems are the SUPG
method, which have been successfully applied to many differ-
ent situations [6,15,4]. The method corresponds to adding a
consistent term providing an additional diffusion in the
streamline direction. The amount of such additional diffu-
sion is tuned by the parameter s that must be chosen in a
suitable way. Several recipes have been proposed for the
choice of s [52]. The method has been proved to have a solid

mathematical basis in several cases of practical interest
[5,6,27]. Nevertheless, the need for a suitable convincing
argument to guide the choice of s is still considered as a major
drawback of the method by several users. Another major
shortcoming of Petrov methods is that the setting for upwind
parameters is not known a priori [53]. Moreover Petrov
methods are known to aggravate the well known inaccura-
cies in the results when the Peclet number is lower than one.

A limited number of analytical solutions are available
for convective–diffusive heat transfer problems. These are
mostly for the semi-infinite solid which moves with velocity
v along the x-axis and has various surface conditions at the
boundary x = 0. Positive velocities correspond to an
accreting medium (such as a snowfield which is being sup-
plemented by continuous falls). Negative values of velocity
correspond to removal of material at x = 0 by erosion or
similar processes.

Unfortunately problems can occur for the accreting
medium when convection overpowers the diffusion process.
Numerical instabilities are a common result and an exam-
ple of what happens is illustrated in Figs. 1 and 2.

The aim of this work is to develop a formulation called the
control volume capacitance method (CVCM) which can pro-
vide stabilized numerical results for convective–diffusive
problems. The formulation which is based on the control vol-
ume approach eliminates the need of employing stabilization
parameters s. Instead, additional diffusion is incorporated
into the capacitance term. To demonstrate the applicability
of the method, unsteady convective–diffusive heat transfer
is performed in the classical 1-D semi-infinite domain.

Fig. 1. Square domain with uniform Dirichlet conditions, upward diagonal velocity and zero sources. SUPG and FIC solutions obtained with a structured
mesh of 10 · 10 linear four node square elements [64].
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