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a  b  s  t  r  a  c  t

This paper  develops  a robust  bundled  active  and  reactive  power  management  of  EV integrated  smart
distribution  networks.  To  model  the  problem,  at first,  the  deterministic  formulation  of  the  problem  is
expressed  as  a  non-linear  programing  (NLP),  which  minimizes  the difference  between  the  energy  cost  and
the revenue  of  EVs’  (parking  lot’s)  reactive  power  exchange  with  the  network  as  the  objective  function,
subject  to the  AC  power  flow  equations,  system  operation  limits  and EVs’  characteristics  as  the  prob-
lem  constraints.  Then,  while  the  NLP  optimization  reveals  local  optima,  the  NLP model  is converted  into
a linear  programming  (LP)  model  using  linearized  AC  power  flow  equations.  The  system  uncertainties
including  active  and  reactive  loads,  electrical  energy  and  reactive  power  prices  as  well  as  EVs’  charg-
ing/discharging  schedules  are  modeled  in  the proposed  linear  model.  Accordingly,  the robust  model  is
implemented  and  it considers  one  scenario,  namely  the most-conservative  scenario  of  the  objective  func-
tion  in  the  main  problem.  To  decrease  the  calculation  time,  Benders  decomposition  (BD) approach  is used
to speed  up  the total  processing  time.  The  proposed  robust  linear  architecture  is  tested  on three  distribu-
tion  test  networks  to demonstrate  its efficiency  and  performance.  The  results  show  that  the  NLP  model
can  be  substituted  with  the high-speed  LP  model.  Moreover,  the  computation  speed  is improved  by  using
the  BD  method.  In addition,  the  capacity  of  the  injected  power  of  EVs  is reduced  in  the  most-conservative
scenario  in  comparison  with  the  deterministic  model’s  scenario,  while  the consumed  power  of  loads  and
EVs have  been  increased  in this  scenario.  The  proposed  robust  architecture  against  uncertainties  is  shown
to yield  a more  robust  solutions  at  the  expense  of  higher  operation  cost.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Wide deployment of electric vehicles (EVs) is perceived to be
a viable solution for reducing emissions and partially resolving
environmental concerns. EVs can be categorized into two  major
categories: hybrid EVs (which utilize internal mechanisms in the
vehicle to generate and store electricity) and plug-in EVs (which
need to be connected to the grid to be charged). Combinations
of these categories are also possible, such as plug-in hybrid EVs
(known as PHEVs) which take the advantages of both technologies.
PHEVs commonly use unidirectional chargers to transfer power
from the grid in a way that the active power can be controlled
in one direction [1]. These EVs, however, can potentially change
the distribution load profile, especially when their penetration rate
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is high, and accordingly they cause some changes in the distri-
bution network operation such as increasing demanded power of
the network, deteriorating voltage profile, and overloading lines
[2–4]. Application of bidirectional chargers can be a viable alterna-
tive solution to address the mentioned issues as they can improve
the operational performance of distribution networks to manage
bundled active and reactive powers used by EVs [5–7]. Indeed,
EVs that are equipped with bidirectional chargers can facilitate
the operation management of distribution systems. This can be
achieved by an intelligent coordination of loads and EV schedul-
ing in smart distribution networks. In addition to the considerable
complexity, the prevailing uncertainties in the active and reactive
powers’ prices, load forecast errors and EVs behavior (plug in/out
time, stored energy, charge rate, number of EVs connected to the
network, etc.) are the important issues of this coordination that
should be considered [8].

Robust optimization (RO) methods have some practical advan-
tages in comparison with scenario-based methods. In the case of
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Nomenclature

Variables: All variables are in per unit (pu)
C Cost of imported energy from the upstream network

in $
Eu Uncertainty variable of total required energy in

parking lot (EC) in p.u.
Pu, Qu Uncertainty variable of active and reactive loads
PB Active power of all batteries in the parking lot
PBu, SEu Uncertainty variables of PBmax and SEmax

PE,  QE Active and reactive power of parking lot seen from
the network

PG, QG Active and reactive power generation or station
PL, QL Active and reactive line flows
PLC, QLC Active and reactive power losses of chargers
QC Total reactive power of chargers in the parking lot
R The revenue of EVs’ (parking lot’s) reactive power

exchange with the network at the study period in $
V Voltage magnitude
�QE,  �PG Deviations of QE and PG
�V, � Voltage deviation and angle of voltage
�, �̄, � Lagrangian multipliers
�up, �uq Uncertainty variable of �p, �q in $/MWh  and

$/MVArh, respectively
��up, ��uq Deviations of �up and �uq

Constants
A Bus incidence matrix (if there is a line between buses

b and j, Ab,j is equal to 1, otherwise zero)
AER, L All electrical range and distance that EV derives in

the electric mode in miles
ar , aim Coefficients of active power loss of charger
BC, SOC Battery capacity in p.u., and its state of charge
br , bim Coefficients of reactive power loss of charger
EC Total required energy in parking lot in p.u.
Fsub Incidence matrix of bus and upstream network
g, b Conductance and susceptance of a line in p.u.
TPF Tangent value in minimum power factor point
PBmax Charge rate of all batteries in the parking lot in p.u.
PD,  QD Active and reactive loads in p.u.
QE0 Normal value of QE in p.u.
SEmax Charger capacity of all EVs in the parking lot in p.u.
SGmax Maximum upstream network capacity in p.u.
SLmax Maximum line capacity in p.u.
Tstep, �˛  Time step in hour, angle deviation in radian
Vmax, Vmin Maximum and minimum voltages in p.u.
�Vmax Maximum voltage deviation in p.u.
�p, �q Electrical energy and reactive power prices in

$/MWh and $/MVArh, respectively

Sub-indexes
m Line slope in linear term of voltage magnitude
nb, nt Numbers of buses and time periods
r Uncertainty level
U Uncertainty set
ub
i
, ūb
i
, ũb
i

ith variable, normal (forecasted values of the
uncertain parameters) value and deviation value of
uncertainty at bus b

y0, �y  Normal (forecasted) value and deviation value of
variable y (including Eu, Pu, Qu, PBu, SEu, �up, �up and
some of Lagrangian multipliers)

W, S, � The objective function value of the sub-problem,
slack and dual variables in the sub-problem in p.u.

�b budget of uncertainty at bus b

Sets and indices
b, t, l, k Indices of bus, time, linearization segments of

voltage magnitude term and circular constraint,
respectively

ϕb, ϕt , ϕl , ϕk Sets of bus, time, linearization segments of
voltage magnitude term and circular constraint,
respectively

EV’s operation, the RO-based model determines optimal schedules
in order to achieve the best operation characteristics, whereas
scenario-based methods find optimal schedules according to a
limited number of possible uncertainty scenarios. Additionally,
unlike scenario-based models, RO-based methods guarantee a
predefined level of objective function value. In approaches that
parameter uncertainty is modeled using probability and possibility
theories, distribution functions are assumed and employed to
model and measure the objective functions. Furthermore, fuzzy
logic-based models use pre-specified membership functions to
model uncertainty. Similarly, the Monte-Carlo simulation based
approaches need to guess a probability density function for the
uncertain variable based on which the scenarios are generated.
Making such assumptions can sometimes lead to non-protective
conclusions, as further discussed in Ref. [9]. The RO model, on
the other hand, neither requires a particular assumption about
the nature of the uncertain parameter, nor enforces any pre-
assumption on the size of uncertainty. Indeed, different scenario
generation approaches can result in the different solutions espe-
cially in stochastic methods. Also, in scenario generation methods,
the uncertainty parameter should have a probability distribution
function or a specific membership function. In the contrast, in the
proposed model, there is no assumptions that involve the above
mentioned issues and in this regard, results of these two  methods
are not comparable.

Various deterministic, stochastic, and robust active power
management models can be found in the literature for solving sim-
ilar problems associated with EVs. A deterministic active power
management is presented in Refs. [10–13]. In Ref. [10], the EV pen-
etration rate is increased using charging power management while
the objective is to minimize the energy cost. In Ref. [11], the charg-
ing management of EVs is used for optimal load management in
which the objective function is the load changes minimization.
Based on the results of these papers, the EV’s penetration rate is
increased but the network indices have not been improved. In Refs.
[12,13] charging/discharging power management of EVs are used
for increasing the EV’s penetration rate and improvement of net-
work indices such as voltage profile and power losses. A stochastic
active power management in distribution networks is introduced
in Refs. [14–16] where Ref. [14] implements the active power of EVs
to enhance voltage security in microgrids, while Ref. [15] uses the
EVs as storage systems. Ref. [16] presents the stochastic reconfig-
uration and optimal coordination of V2G plug-in electric vehicles
considering correlated wind power generation. However, the active
power management is solely used in the paper. The stochastic
active and reactive power management in the wholesale reactive
power market is introduced in Ref. [17]. Based on Refs. [14–17], the
power management capability of EVs paved the way to implement
them in the distribution networks for different purposes. Robust
active power management is presented in Ref. [18], considering
the battery energy as the only source of uncertainty. Finally, in Refs.
[19–22], active power management of renewable energy resources
and EVs are considered, simultaneously. In order to have a brief
comparison on different works in the area, the taxonomy of the
proposed methodologies for the EVs integration into the distribu-
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