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Unit commitment

The increasing penetration of uncertain generation such as wind and solar in power systems imposes
new challenges to the unit commitment (UC) problem, one of the most critical tasks in power systems
operations. The two most common approaches to address these challenges — stochastic and robust opti-
mization — have drawbacks that restrict their application to real-world systems. This paper demonstrates
that, by considering dispatchable wind and a box uncertainty set for wind availability, a fully adaptive
two-stage robust UC formulation, which is typically a bi-level problem with outer mixed-integer pro-
gram (MIP) and inner bilinear program, can be translated into an equivalent single-level MIP. Experiments
on the IEEE 118-bus test system show that computation time, wind curtailment, and operational costs
can be significantly reduced in the proposed unified stochastic-robust approach compared to both pure
stochastic approach and pure robust approach, including budget of uncertainty.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, higher penetration of variable and uncertain
generation (e.g., wind and solar power) has challenged independent
system operators (ISOs) to maintain a reliable and still economical
operation of power systems. To achieve this and to be prepared for
future demand, ISOs decide about startup and shutdown schedules
of generating units some time (typically a day) up front by solving
the so-called unit commitment (UC) problem, whose main objec-
tive is to minimize operational costs while meeting power system
constraints. These operational costs are commitment-related costs,
and dispatch costs of both thermal and wind generating units,
where the latter can present negative cost (or bids) [1]. High lev-
els of variable and uncertain generation significantly increase the
uncertainty in the net forecasted future demand, increasing the
difference between a fail-safe solution and an economical solu-
tion, and this dilemma thereby increases the complexity of the UC
optimization problem [2].

The two main approaches for dealing with the uncertainty in UC
problems are stochastic and robust optimization. Stochastic opti-
mization (SO) [2-5] typically consists of minimizing expected costs
over a set of possible scenarios for uncertain parameters. How-
ever, SO can become impractical under high-dimensional problems
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mainly because of a heavy computational burden [2]. Additionally,
the main goal for ISOs is to ensure a safe operation of the system, and
SO does not give sufficient guarantees on meeting the constraints
in realizations of the uncertainty. Moreover, SO requires a large
number of scenarios to be reliable and their associated probability
distribution is hard to obtain.

In robust optimization (RO) [6-10] the costs are minimized
maintaining feasibility under all possible realizations of uncertain
parameters within some specified uncertainty set. Consequently,
the resulting schedules could turn out to be over-conservative
under a large uncertainty set: although the probability of the
worst-case event is virtually nil, the chosen schedule is robust
for this event, and hence much more costly than what is actually
required. One way to reduce over-conservatism is to use a bud-
get of uncertainty, which models a smaller uncertainty set in a
flexible way [6]. A robust UC typically requires solving a bilevel
optimization problem, where the outer level is a mixed-integer
linear program (MIP), and the inner level is usually a bilinear pro-
gram, which is non-deterministic polynomial-time hard (NP-hard)
[6]. Finding optimal robust solutions in time for large-scale sys-
tems is still a major challenge; in particular, solving the respective
bilinear problems usually requires sub-optimal heuristic methods
or computationally expensive exact methods [6,11-14]. Further,
this bilinear problem is typically solved multiple times as part of
an iterative algorithm such as column-and-constraint generation
[11], which also requires solving a difficult master problem multi-
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ple times. This computational difficulty highlights the challenge of
creating efficient methods to find effective robust UC solutions.

Recently, the so-called unified stochastic-robust (SR) optimiza-
tion approach has been proposed to strike a very good balance
between robustness and efficiency [7]. This approach increases safe
operation of the system while mitigating the over-conservatism
of robust optimization. However, since this formulation combines
the stochastic formulation (which requires optimization over many
scenarios) with the bilinear robust formulation, the computational
challenge is even stronger.

This paper considers wind dispatch flexibility by allowing cur-
tailment in the UC formulation. In various previous works, wind
power has also been modeled as dispatchable by allowing wind
curtailment in UC or expansion planning models [1,12,15-19]. In
this paper we will exploit some consequences that are obtained in
the robust UC problem when wind power is dispatchable, which
will lead to very computationally efficient formulations.

This paper rises up to various current challenges in the UC prob-
lem by providing the following contributions:

1. Under the case in which wind power availability is modeled
through a box uncertainty set, and assuming that wind power
can be curtailed, we prove that the usually non-linear and NP-
hard [6] second stage of a fully adaptive robust UC problem
has an equivalent linear program (LP) representation, which
solves in polynomial time. Consequently, in this case the fully
adaptive two-stage robust UC formulation can be translated
into an equivalent single-level MIP problem. This allows solving
realistically-sized problem instances very close to global opti-
mality significantly faster than the traditional bi-level robust UC.
When compared with a typical robust formulation based on bud-
get of uncertainty, the proposed formulation provides similar
results but solves significantly faster.

2. We also show that considering dispatchable wind can contribute
to efficiently solving a unified stochastic-robust optimization
problem [7] by linking the wind dispatch between the stochastic
and the robust parts. Thus, the proposed SR formulation provides
a cheaper operation, higher robustness, less wind curtailment,
while simultaneously having lower computational burden than
a typical RO formulation based on budget of uncertainty. Also,
the SR needs very few scenarios to provide very similar results
to a scenario-rich SO, hence naturally avoiding the high com-
putational burden associated to considering a large number of
scenarios.

The remainder of this paper is organized as follows. Section 2
details the proposed robust UC reformulation with dispatchable
wind, and shows how to complement stochastic UC by incorporat-
ing the robust part. Section 3 provides and discusses results from
several experiments, where a comparison between robust, stochas-
tic and unified UC formulations is made. Finally, main conclusions
are drawn in Section 4.

2. Mathematical models and structural results

This section formulates the mathematical models and presents
a set of results that exploit the structure of the robust UC with dis-
patchable wind. Section 2.1 defines this problem, and Section 2.2
presents a general structural result that characterizes the subset of
elements of the uncertainty set that can achieve the worst case. Sec-
tion 2.3 studies this structural result under the widely used budget
and box uncertainty sets. Finally, Section 2.4 studies the conse-
quences of these structural results in the unified stochastic-robust
UC.

2.1. Robust UC with dispatchable wind

We extend the 3-binary setting UC formulation [20] to a robust
UC with dispatchable wind. The compact form of this robust UC is
expressed as

pip {0 ar, i (€0 edw) | ™
where

X={xe {0,179 Ax <a} (2)
and

2(x,8)={(p,w): Ep+Fw<g+Gx (3a)
w<él (3b)

Here, x is a vector of first-stage decisions including the binary
on/off, start-up and shut-down decisions of conventional gener-
ators. These decisions are constrained through set X defined in
(2), which includes the logical relations between on/off, start-up
and shut-down variables, as well as minimum up and down times.
In (2), G is the set of conventional generators and 7 is the set of
time periods. Vector & contains all uncertain parameters in the
problem, corresponding to the availability of wind power at all
wind farms and time periods, i.e., &€ = (E,-t tieWt e 7’) where
&;; is the available wind power at bus i and time t, and W is the
set of buses containing wind production. The closed set &' is an
uncertainty set that describes the realizations of &. Vectors p, w
are second-stage power dispatch decisions for conventional gen-
erators and wind farms, respectively, i.e., p= (pgt : g € G, t € 7)
and w = (wy ;i € W, t € T), where pgr and wy, are the power out-
put of conventional generator g and of wind farms at bus i, at time
t, respectively. These power dispatch decisions are constrained
through set £2(x, &) defined in (3). In $2(x, &), Eq. (3a) involves
dispatch-related constraints such as power output bounds for con-
ventional generators, nonnegativity of power output at wind farms,
ramping constraints, transmission line capacity constraints and
energy balance constraints. Eq. (3b) represents the upper bound for
power output at wind farms, depending on available wind power,
that is, w;; < &;; for all i, t. Finally, the objective function of problem
(1) consists of minimizing the sum of no-load, start-up and shut-
down costs, given by b'x, and worst-case dispatch costs, given by
the inner max-min problem, where ¢ contains the production costs
of conventional generators and where d is the production costs of
wind farms, which is usually zero or negative representing negative
bids (resulting in wind curtailment penalization) [1].

The robust UC problem (1) is an adaptive robust optimization
problem [21]. In this problem, p and w are adaptive decision vari-
ables whose values can depend on the realization of the vector of
uncertain parameters &, while x is a “here-and-now” decision that
is taken before £ is realized. This adaptive robust framework for the
UC problem was first proposed in [6,22,23]. This section focuses on
studying the consequences of considering wind power to be dis-
patchable, that is, that wind power output w;, can take any value
between 0 MW and its availability &;;. In what follows, we provide
a general result that characterizes a subset of the uncertainty set
that necessarily contains the worst-case realization of &.

2.2. Worst-case is achieved in the set of minimal elements

The inner max-min problem in the robust UC (1)

max min (c'p+d'w) (4)

§cZ (pw)eQ2(x.8)

has a special structure: the only dependence of §2(x, &) on & is
through constraint (3b), namely, w < & We can use this structure
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