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Abstract

A numerical tool for simulating the polarization distribution in ferroelectric materials is presented. Using the concept of a phase field,
a continuum physics model is established which is descretized with finite elements. The main feature of the numerical implementation is
an implicit time integration of the non-linear evolution equation. Representative examples and comparison to experimental measure-
ments from the literature show the main features of the model.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The electro-mechanical properties of ferroelectric mate-
rials are determined by the microstructure, i.e. mainly the
domain structure, of these materials. Understanding the
microscopic phenomena is essential in the analysis of these
materials. The microstructure is subject to change during
different loading situations, as for example the application
of an external electric field or an external mechanical stress.
The present paper focuses on making these microstructural
changes accessible for a simulation technique. Due to the
versatile applicability for different non-linearities and
boundary conditions, the model is implemented into an
implicit Finite Element Method. Main features and rele-
vant microstructural situations are analyzed to illustrate
the capabilities of the model. Phase field models are well-
established in many fields of material physics, as e.g. to
model martensitic or diffusive phase transitions (see among
others [9,19,11]). In the field of ferroelectrics the applica-
tion is more involved through the electro-mechanical cou-

pling. Many authors have used a Ginzburg-Landau type
theory to describe the statics and dynamics of ferroelec-
tric domain structures (e.g. [4,1,2,16]). These approaches
treat the total polarization as the primary order parameter
and the strain as a secondary, dependent order parameter.
The application of these theories to realistic scenarios is
limited due to the fact that the polarization is the only inde-
pendent variable. Ferroelectric and ferroelastic switching
can only be achieved through artificial terms in the total
potential. More recently, in Xiao et al. [20] and Zhang
and Bhattacharya [22,21] the electric potential was intro-
duced as an independent variable which allows for the solu-
tion of the associated electro-static field problem. Xiao
et al. [20] use a finite element formulation but fail to give
any information about the implementation, whereas Zhang
and Bhattacharya [22,21] adopt a finite difference scheme.
Other recent works include Bhattacharya and Ravichan-
dran [3], Soh et al. [13], Wang and Zhang [17,18]. The
implementations frequently use finite difference schemes
(sometimes in combination with FFT-techniques) and
explicit time integration. In order to derive a robust and
flexible implementation with respect to boundary condi-
tions, we follow a finite element scheme in combination
with an implicit time integration. A similar approach was
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taken in Su and Landis [14,15]. All cited phase field mod-
eling approaches use the total material polarization as the
order parameter. In contrast, our model uses the spontane-

ous polarization as (primary) order parameter, from which
the spontaneous strain and the piezoelectric constants are
derived as secondary order parameters.

In conjunction with previous works, Gross et al. [6],
Mueller et al. [10], Schrade et al. [12], this allows us to
introduce defects in the simulation. However this is not
the main focus of the present work.

2. Theory

In order to make the present paper self-contained
we briefly recast the basics of ferroelectrics in a short-
ened way, appropriate for the following numerical
implementation.

The body under consideration occupies a region B with
boundary oB and is assumed to have ferroelectric and pie-
zoelectric properties. Neglecting inertia terms, body forces,
and volume charges, the equilibrium conditions for the
mechanical stress r and the balance of the electric displace-
ment D read

divr ¼ 0 in B;

divD ¼ 0 in B:
ð1Þ

The corresponding boundary conditions for either the
mechanical displacement u or the surface traction rn are

u ¼ u� on oBu;

rn ¼ t� on oBt:
ð2Þ

For the electric problem the corresponding boundary con-
ditions are specified either for the electric potential u or the
surface charge density D Æ n:

u ¼ u� on oBu;

D � n ¼ �Q� on oBQ:
ð3Þ

In Eqs. (2) and (3) the vector n denotes the outer unit nor-
mal to the surface oB. The phase field potential H of the
system consists of three parts: the electric enthalpy Hent

(cf. [12]), a phase separation potential Hsep, and an inter-
face energy Hint:

H ¼ H ent þ H sep þ H int ð4Þ
with

H ent ¼ 1

2
ðe� e0Þ : ½ ðe� e0Þ� � ðe� e0Þ : TE

� 1

2
E � KE � P � E;

H sep ¼ wðPÞ;

H int ¼ 1

2
bkrPk2

:

ð5Þ

Here P is the spontaneous polarization of the material, ,
, and K denote the elastic stiffness, the piezoelectric cou-

pling constants, and the dielectric tensor, respectively.

The remanent strain e0 is an inelastic eigenstrain which de-
scribes the ‘‘phase transition’’ from one polarization state
to another. The scalar b is the scaling parameter of the
interface energy. The mechanical strain e and the electric
field E are defined as

e ¼ 1

2
ðruþ ðruÞTÞ;

E ¼ �ru;
ð6Þ

respectively.
The constitutive equations can be derived from the

potential by standard arguments of rational thermodynam-
ics. These arguments yield

r ¼ oH
oe
¼ ðe� e0Þ � TE; ð7Þ

and

D ¼ � oH
oE
¼ ðe� e0Þ þ KE þ P: ð8Þ

The time evolution of the phase field (order) parameter P is
given by a Ginzburg-Landau type equation. Due to the
appearance of the gradient of P in the potential the varia-
tional derivative appears in the evolution equation

_P ¼ �a
dH
dP
¼ �a

oH
oP
� div

oH int

orP

� �

¼ �a
oH ent

oP
þ ow

oP
� bDP

� �
; ð9Þ

where a is another scalar parameter, which describes the
mobility of the process. This lets the spontaneous polariza-
tion evolve such that the total potential is reduced in the
course of the evolution. For details of the evaluation of
the variation and the partial derivatives the reader is re-
ferred to Appendix A. The boundary conditions for the
spontaneous polarization may be specified as

P ¼ P� on oBP ;

rPn ¼ p� on oBp:
ð10Þ

The determination of the boundary conditions on the order
parameter is not a trivial task. In the following we will tac-
itly assume homogeneous Neumann type boundary condi-
tions, i.e. p* = 0 in (10). In view of their importance in the
phase transition, the inelastic strain and the piezoelectric
constants are chosen to depend on the spontaneous polar-
ization. The eigenstrain is constructed to be purely devia-
toric, and e0 resembles the strain for the fully poled state
with respect to the paraelectric phase. With reference to
Kamlah [8] we have

e0ðPÞ ¼ 3

2
e0 kPk

P 0

e� e� 1

3
1

� �
; ð11Þ

where e is the unit vector in the poling direction, i.e. e =
P/kPk, and P0 is the equilibrium polarization for zero ap-
plied loading. With this definition the spontaneous strain is
linear in the spontaneous polarization. It is noted that
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