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This paper  proposes  a distributed  electric  vehicle  (EV)  coordination  mechanism  enabling  the  management
of  the  charging/discharging  set-points  of an  EV fleet.  A distributed  iterative  algorithm  is  introduced  to
manage  EV  charging/discharging  in  the  intra-day  operation  aiming  to meet  the mobility  energy  require-
ments  of  the EV  fleet  respecting  the day-ahead  schedule  of  the  EV  aggregator.  The  proposed  distributed
EV  charging  coordination  can be  applied  considering  any  day-ahead  energy  scheduling  profile  defined
by  the  EV  aggregator’s  business  policy.
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1. Introduction

The participation of electric vehicles as individual entities to
the electricity markets (i.e. wholesale and ancillary services) is
impractical due to the limited EV battery capacity. The aggregation
of the battery capacities of geographically dispersed EVs and the
coordination of their operation can form a virtual storage capacity
capable to participate into electricity markets and to offer ancil-
lary services to the grid (i.e. peak shaving, frequency and voltage
regulation, balancing, etc.). Several papers [1–9] have been pub-
lished in the literature about the benefits derived from the EV grid
support services, considering unidirectional and especially, bidi-
rectional power flow between EV and the grid. The major issues
when considering bidirectional power flow are the battery degra-
dation, the need for upgrade of the EV power electronic interfaces
and the additional ICT requirements. Despite these problems, it is
shown in economic and technical research studies [1–9], that the
bidirectional operation can maximize market and network benefits.

EV mobility and space disparity are the major difficulties in
managing dispersed storage resources forming virtual associations,
in comparison to the conventional battery storage stations. EV
mobility implies additional operational constraints, which make
EV coordination a very complicated task. Several EV management
schemes have been proposed in the literature, e.g. Ref. [10], aim-
ing at different coordination objectives, such as cost minimization,
voltage support, peak shaving/“valley-filling”, frequency support,
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harmonic and reactive power compensation. Various methods
can be implemented for EV coordination, such as Nash certainty
equivalence and mean-filed games, “max-weight” policy, auc-
tion or Lagrangian Relaxation based optimization, non-dominated
sort genetic algorithms, droop-based control, resistance emulation
methods, etc. Moreover, the objectives of EV charging coordination
can be met  by applying decentralized [11–21] or centralized control
algorithms [22–31]. The major advantage of decentralized control
is its potential for real-time implementation due to the reduced
computational requirements achieved by the decomposition of the
centralized problem into local sub-problems coordinated by con-
trol signals.

This paper introduces a distributed EV coordination for opti-
mally tracking an energy schedule. The core of the proposed EV
coordination is based on the optimal decentralized protocol for
EV charging presented in Ref. [13], which is developed for track-
ing a given profile considering only unidirectional power flow
(i.e. charging mode). The unidirectional EV coordination com-
prises one set of decision variables Xch = {Xch,1, Xch,2, . . .,  Xch,N},
where Xch,i, = {Xch,i(1),. . .,  Xch,i(T)}, defining the optimal EV fleet
charging set-points for each hour of the examined period T. The
control signals generated by the EV aggregator aim to define
the charging set-points of a number of EVs in order to achieve
the “valley-filling” concept. In this paper, the EV coordination
method described in Ref. [13] is extended to support bidirectional
power flow between the EV battery and the grid. The imple-
mentation of bidirectional power flow introduces one additional
set of decision variables Xdch = {Xdch,1, Xdch,2, . . .,  Xdch,N}, where
Xdch,i, = {Xdch,i(1),. . .,  Xdch,i(T)}, to represent the discharging oper-
ation. The two  decision variables for each EV (Xch,i, Xdch,i) are
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Nomenclature

BatCi Battery replacement cost (400$/kWh)
Compi(t) Compensation factor of the i-th EV to account for

unplanned departures
Dci Battery degradation cost
Degi(t) Battery degradation
E[] Expected value function
Efi Efficiency of EV charger
ExU, ExD Expected percentage of regulation up/down capac-

ity dispatched each hour
ExR Expected percentage of responsive reserve capacity

dispatched each hour
FPi(t) Final power draw of i-th EV considering regula-

tion/responsive reserves
L(t) System net load at time t
Mci Battery capacity of i-th EV
Mk The price of energy EV users are charged

($0.01/kWh)
MnAPfor

aggr/MaxAPfor
aggr Forecasted min/max additional power

draw
MnAPi(t), MxAPi(t) Min/max additional power draw of i-th

EV
MnAPri(t) MaxAPri(t) Real min/max additional power draw

of i-th EV
MnL, MxL  Min, max  day-ahead forecasted net load
Mpi(t) Maximum power draw of i-th EV at time t
N Number of coordinated EVs
P(t) Energy price at time t
Pbatlow Lower safe operational limit of EV battery
pi(t) Energy discharged due to the discharge efficiency
POPfor

aggr (t) Aggregator’s energy schedule at time t
POPi(t) Estimated operating point of ith EV
Plugi(t) Dual variable defining the non-commuting hours (1

holds for plugged-in EVs and 0 holds for non grid-
connected EVs)

PRr(t) Forecasted price of spinning reserve at time t
PRu(t), PRd(t) Forecasted price of regulation up/down at

time t
pv(t) Aggregator’s virtual price signal at time t
Ru(t), Rd(t) Aggregator’s regulation up/down capacity
Rr(t) Aggregator’s responsive reserve capacity
RsRPi(t) Reduction in power draw available for spinning

reserve of i-th EV
SOCi(t) State of charge of i-th EV’s battery at time t
SOCmin, SOCmax Low and max  state of charge of the i-th bat-

tery
Tripsi(t) Battery consumption after i-th EV travel at time t
U() The symbolic representation of a function
uc, ud Integer variables for charging/discharging
X�

ch,i (t) Charging set-point of i-th EV at time t of the v-th
iteration of the EV energy coordination algorithm

X�
dch,i (t) Discharging set-point of i-th EV at time t of the v-th

iteration of the EV energy coordination algorithm
Xv

i (t) Aggregated EV power profile at time t of the v-th
iteration of the EV energy coordination algorithm

interdependent, since during any timeslot t the variables Xch,i(t)
and Xdch,i(t) cannot be simultaneously true (non-zero). For this rea-
son, two auxiliary binary variables are introduced to restrict such
an operation. In this way, the EV coordination algorithm in Ref.
[13] is transformed from a quadratic, linear constrained problem
to a mixed integer, quadratic one, which requires more complex
optimization approaches.

The optimal scheduling method developed in Ref. [9] is utilized
in order to generate a day-ahead charging/discharging profile. It is
important to underline that the proposed EV coordination method
can satisfy any optimal energy scheduling method without any lim-
itation, respecting at the same time the EV operational constraints.

The contribution of this paper lies in the following aspects:

I. It extends the EV coordination algorithm for tracking a given
profile presented in Ref. [13], from unidirectional power flow
(i.e. charging mode), also to bidirectional power flow (i.e. charg-
ing and discharging mode) between EV battery and the grid.

II. It implements the Bender Decomposition method for defin-
ing the optimal response of each EV, to the aggregator’s
control signals. There are several methodologies for solving
this mixed-integer quadratic problem, including mixed-integer,
nonlinear programming (MINLP) problems (MINL), such as Ben-
der Decomposition, Branch and Bound, Outer Approximation,
Feasibility Approach, etc. The widely adopted Bender Decom-
position methodology is applied in this paper.

III. It provides a convergence analysis of the proposed EV coordi-
nation algorithm.

The rest of the paper is organized as follows. Section 2 presents
briefly the adopted optimal day-ahead EV scheduling for generating
the tracking profile. Section 3 presents the enhanced distributed
EV coordination algorithm for tracking the day-ahead scheduling
profile in the intra-day operation. Section 4 presents the case study.
The simulation results are presented and analyzed in Section 5.
Finally, Section 6 concludes.

2. Optimal EV scheduling

The optimization approach developed in Ref. [9] aims to max-
imize the aggregator’s revenues (Eq. (1)) considering ancillary
services (regulation up/down and spinning reserve) by exploiting
the bulk energy in the car batteries. The main advantage of this
algorithm is that it allows asymmetric bidding of regulation up and
down and bidding of capacities of energy and services lower than
the available EV battery capacity.

The day-ahead optimal EV scheduling is formulated as:

Maxf =
T∑
t=1

(PRu (t)Ru (t) + PRd (t)Rd (t) + PRr (t)Rr (t)) + Mk

N∑
i=1

T∑
t=1

(
E
{
FPi (t)

})
−

N∑
i=1

T∑
t=1

(
E
{
FPi (t)

}
P (t)

)
−

N∑
i=1

T∑
t=1

(Degi (t)) (1)

s.t

h1,i,t = POPi (t) (1 − Plugi (t)) = 0 (2)

h2,i,t = MxAPi (t) (1 − Plugi (t)) = 0 (3)

h3,i,t = MnAPi (t) (1 − Plugi (t)) = 0 (4)

h4,i,t = RsRPi (t) (1 − Plugi (t)) = 0 (5)

h6,i = SOCi (1) −
T∑
t=1

Tripsi (t)

+Efi
T∑
t=1

(POPi (t) + �i (t)) − Mci = 0 (6)

g1,i,t = (MxAPi (1) + POPi (1))Efi + SOCi (1) − Mci ≤ 0 (7)
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