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a  b  s  t  r  a  c  t

Vector  fitting  (VF)  algorithms  have become  popular  and  powerful  tools  for estimating  models  formed
by  rational  basis  function  (RBF)  expansions.  In this  paper,  we  first translate  the  well-known  continuous
time-domain  VF  method  (cTD-VF)  to  a discrete  time-domain  framework.  We  denote  this  new  domain  VF
method  by  dTD-VF.  Differently  from  the cTD-VF,  the  dTD-VF  formulation  does  not  rely  on a  numerical
approximation  of convolution  integrals  and,  as a result,  it can be  easily  implemented  with  a  variety  of  RBF
sets. The  second  part of  this  paper  shows  that  the  proposed  dTD-VF  can  also  be  transformed  into  a  novel
instrumental  variable  (IV)-dTD-VF  technique,  which  is  shown  to  have  a guaranteed  optimal  solution  at
convergence.  Moreover,  this  important  optimality  property  does  not  depend  on the  nature  of  the  noise
that  corrupts  the  data  (for  instance,  if it is  white  or colored).  Two  case  studies  highlight  the  advantages  of
using  the proposed  methods.  One  of  these  examples  consists  of  modeling  the  admittance  characteristics
of  a  power  system  implemented  as a frequency-dependent  network  equivalent  (FDNE).

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Linear system identification based on models formed by ratio-
nal basis function (RBF) expansions involves, in the most general
cases, the minimization of a multiple-parameter nonlinear least-
squares objective function [1–4]. In order to address this nonlinear
problem, several identification methods make use of the so-called
vector fitting (VF) iterative algorithms [5].

Also known as robust variants of the original
Sanathanan–Koerner [6] and Steiglitz–McBride [7] iterations,
VF algorithms have become very popular within the power sys-
tems area, with reports of successful applications in transient
analysis of frequency-dependent network equivalents (FDNE)
[8,9], wideband modeling of transmission lines and transformers
[10–12], and advanced packaging [13,14]. In a more recent per-
spective, VF formulations have also shown to be powerful tools
for passive macromodeling implementations [5,15,16] as well
as for estimating oscillatory (electromechanical) modes during
post-disturbance moments in power systems [17].

For system identification based on time-domain data, the
continuous time-domain VF technique introduced by [14] (here
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denoted by cTD-VF) remains as one of the most adopted techniques.
As in its classical frequency-domain counterpart method [12], the
cTD-VF is also specifically designed for estimating models formed
by continuous-time partial fractions. However, since time-domain
tabulated data are always in the form of discrete-time samples, the
cTD-VF’s practical implementation relies on a numerical approxi-
mation of convolution integrals [5,8,14]. Moreover, if the data used
for estimation are corrupted by colored noise, recent results on VF
algorithms show that they never converge to any local minimum
of their corresponding nonlinear least-squares objective functions
(NLSOFs) [18]. When it comes to power systems signals such as
active power and operation frequency, the so-called ambient and
measurement noise sources are usually regarded to be colored and
white, respectively [19,20].

In this paper, we  first translate the cTD-VF to a discrete time-
domain framework. We denote this new domain VF method by
discrete time-domain VF (dTD-VF). Since dTD-VF operates directly
in the discrete time-domain, its practical implementation does not
rely on a numerical approximation of convolution integrals. This
also allows dTD-VF to be easily used not only with partial frac-
tions, but also with more general RBF sets, such as the discrete-time
Takenaka–Malmquist orthonormal basis functions [1,4].

As will be shown in Sections 3 and 5 of this paper, the dTD-VF
formulation can be easily implemented and usually provide a good
solution after convergence. As other standard VF algorithms [18],
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however, dTD-VF does not guarantee that, if it converges, a local
optimum of its NLSOF is obtained. This fact motivates us to pro-
pose an instrumental variable (IV) version of the dTD-VF, which we
denote by IV-dTD-VF. This IV formulation guarantees that the gra-
dient local optimality condition of the NLSOF is necessarily satisfied
at convergence. Moreover, this important result does not depend
on the nature of the noise that corrupts the data. As a result, more
accurate RBF models may  be obtained even if this noise is colored.

The proposed IV-dTD-VF is shown to be naturally more com-
putationally expensive than the dTD-VF and, therefore, we  also
propose in this paper an approximation procedure which mini-
mizes this problem without losing the local optimality property of
the method. Some of the ideas of this IV formulation can be related
with the ‘mode 2 iteration’ introduced by Steiglitz and McBride in
[7] and revisited in [21]. These two papers describe a polynomial-
based system identification technique, whereas here we develop
a VF (RBF) method. Since IV-dTD-VF uses a Steiglitz–McBride
iteration-based approach for selecting poles of possibly general RBF
sets, it can also be considered as a generalization of recently pro-
posed (frequency-domain) IV techniques such as those in [22,23].

The paper is organized as follows. In Section 2, we  briefly sum-
marize the problem of linear RBF model identification in discrete
time-domain. In Section 3, we introduce the dTD-VF method. In
Section 4, we propose the IV version of the method, that is, the
IV-dTD-VF formulation. In Section 5, two case studies are used to
compare the proposed methods with the cTD-VF technique. The
first case study consists of modeling the admittance characteristics
of a power system implemented as a FDNE, whereas the second
case study aims at identifying a third order system corrupted by
colored noise. Finally, Section 6 addresses the conclusions of this
work.

2. Problem statement

In the discrete time-domain, a stable single-input single-output
(SISO) linear time-invariant system can be described in terms of its
scalar input sequence u0(k) and its scalar output sequence y0(k) as
[24]

y0(k) = G0(q)u0(k) + v(k), (1)

where q denotes the forward shift operator and v(k) represents a
sequence of stochastic additive disturbance at the system output,
which can be but is not restricted to white noise. In power systems
analysis, u0(k) and y0(k) may  represent a variety of signals such as
voltage, active or reactive power, operation frequency, etc. In the
specific context of FDNE modeling, G0(q) commonly represents the
frequency-dependent admittance or impedance characteristics of
a single component (for instance, a cable or a transmission line) or,
in a more realistic scenario, a combination of components [5,8]. In
these cases, u0(k) and y0(k) naturally assume the form of voltage
and current signals.

In this paper, the major identification goal consists of finding
a RBF model whose dynamic behavior is sufficiently close to the
dynamic behavior of G0(q). Such a RBF model must have a mathe-
matical structure in the form:

G(q, c, a) = B(q, c, a)

F̂(q, a)
= c0 +

n∑
i=1

ci�i(q, a). (2)

In (2), the ratio between polynomials B(q, c, a) and F̂(q, a) is
expanded into a series of n rational basis functions {�i(q, a)}ni=1 [1],

where c is the vector of unknown coefficients c = [ c0 · · · cn ]T

and a is the vector of unknown transfer function poles a =
[ a1 · · · an ]T. Note that a is also assumed to parametrize the RBF
set {�i(q, a)}, whereas n also stands for the model order. Select-

ing this model order has already been discussed by several authors
in the literature [1], mainly for one-parameter RBF sets such as
Laguerre and Kautz functions.

In this paper, we address the general multiple-parameter case
where the nth order RBF model is parametrized by a set of (possibly)
different poles a1, . . .,  an. In this context, partial fractions [5,25]

�i(q, a) = 1
q − ai

, i = 1, . . .,  n (3)

or the well-known discrete-time Takenaka–Malmquist orthonor-
mal  basis functions defined by Eq. (4) [26,1] are commonly chosen
to serve as RBFs.

�i(q, a) =
√

1 − |ai|2
q − ai

i−1∏
j=1

(
1 − a∗

j
q

q − aj

)
, i = 1, . . ., n. (4)

Based on a sequence of N time-domain input-output samples
extracted from system (1), estimating the unknown RBF model
parameters c and a in (2) leads to the following nonlinear least-
squares problem

argminc,a

N∑
k=1

(y0(k) − G(q, c, a)u0(k))2,

= argminc,a

N∑
k=1

(
y0(k) −

(
c0 +

n∑
i=1

ci�i(q, a)

)
u0(k)

)2

.

(5)

In some cases, the model poles a may be chosen beforehand,
based on a prior knowledge about the dominant dynamics (poles)
of system G0(q). In such cases, (5) reduces itself to a linear least-
squares problem, since only coefficients c0, . . .,  cn remain unknown.
Unfortunately, a prior knowledge about the dominant dynamics of
the system is usually not available.

In the following sections, we propose two different methods for
iteratively estimating a and c. Both methods are based on trans-
forming (5) into a sequence of linear problems, where coefficient
sets are then estimated by making use of pre-specified update-
dependent poles.

3. The dTD-VF method

Considering many successful frequency-domain VF techniques
in the literature (see, e.g., [5,13]), we  shall here address the com-
plete nonlinear estimation problem in (5) by using an alternative
model structure in the form

Ḡ(q, �, ā) = B(q, �, ā)
F(q, �, ā)

= B(q, �, ā)/F̂(q, ā)

F(q, �, ā)/F̂(q, ā)
, (6)

with

B(q, �, ā)

F̂(q, ā)
= r0 +

n∑
i=1

ri�i(q, ā), (7)

F(q, �, ā)

F̂(q, ā)
= 1 +

n∑
i=1

di�i(q, ā). (8)

In these equations, ā is assumed to be a set of n specified poles
and � is the (alternative) coefficient vector:

� = [ r0 · · · rn d1 · · · dn ]T
. (9)

The main reason for defining the model structure (6) is to pro-
vide an alternative way  for estimating the poles of a RBF model.
Since ā is known, then the poles of Ḡ(q, �, ā) (roots of polynomial
F(q, �, ā)) depends solely on the unknown coefficients {di}. Once
{di} are estimated, the corresponding poles of Ḡ(q, �, ā) can be
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