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a  b  s  t  r  a  c  t

A  constrained  optimization  algorithm  is  proposed  for the  determination  of  the  minimum  change  in  the
parameter  values  of  a set  of controllers  that  locates  a  complex  pair  of  eigenvalues  of a  linearized  power
system  model  at a user-defined  small-signal  security  boundary.  The  intended  practical  use is  to  assess
the  combined  robustness  of  the  system  controllers  in  maintaining  adequately  damped  power  system
oscillations.  The  oscillation  damping  security  margins,  given  an  operating  point  and  a  set  of  fixed  damp-
ing  controller  parameters,  is the  Euclidean  norm  of  the  relative  parameter  variation  vector,  also  referred
in the  literature  as the  minimum  distance  in  the control  parameter  space.  The  computational  algorithm
to  find  the  Closest  Security  Boundary  in the Control  Parameter  Space,  CSBCPS,  is  based  on the rigorous
mathematical  implementation  of  the  non-linear  programming  method  to the  problem,  including  con-
straints  on  the  parameter  ranges.  The  resulting  equations  are  solved  by  the  Newton  method.  Numerical
results  for a  large  practical  power  system  dynamic  model  are  detailed  described  to illustrate  the  use of
the proposed  CSBCPS  algorithm  in small-signal  applications  involving  multiple  thyristor  controlled  series
compensators  and  power  system  stabilizers.
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1. Introduction

Bifurcation methods can directly compute values of a specified
set of system parameters that lead the system to the small-signal
stability boundary where a system eigenvalue, either real or a
complex-conjugate pair, is placed over the imaginary axis of the
complex plane [1–17]. Saddle-node bifurcation methods have been
applied to power flow maximum loadability studies [2–4] and Hopf
bifurcation methods have been used to determine small-signal
stability margins in power system oscillation studies regarding
electromechanical [4–13] or subsynchronous stability dynamics
[14–17].

These bifurcation methods complement the conventional small-
signal stability analysis in the sense that they can determine how
far the operating point is from an instability condition, showing
how much the system parameters should vary to turn well-damped
oscillations into undamped ones. There is a continuous interest on
this topic as demonstrated by recent publications [11–13,16,17].
However, efficient and robust algorithms to calculate minimum
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distance to Hopf bifurcations in large scale power systems are still
lacking. This paper presents an algorithm to determine the clos-
est small-signal security boundary and the results obtained for a
large practical power system model, which is general to consider
any boundary and any number and type of control parameters. The
two Newton algorithms in Ref. [1] compute the values of a single
control system parameter that place a system eigenvalue exactly
at the small-signal stability or security boundary and are espe-
cially suited to large electrical power system models. As a major
extension of the work in Ref. [1], this paper proposes an optimiza-
tion algorithm for the computation of the minimum distance to
the security boundaries in the parameter space of the controllers,
determining the minimum change in the values of a set of control
parameters that would lead the linearized system to these closest
small-signal stability or security boundaries.

The formulation in Ref. [1] is revisited in the next Section in order
to allow a gradual and more effective description of the proposed
method, presented in Section 3. Parameter range constraints are
included into the algorithm in Section 4. Finally, Section 5 presents
the results on the application of the proposed method to obtain
the closest security margins in the control parameter space of a
large-scale linearized model of the Brazilian interconnected power
system.
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The proposed algorithm is the first to compute the closest small-
signal security boundary considering the variation of any number
and type of controller parameters associated to any equipment in
large scale power system dynamic models. No similar methods
have been previously presented in the literature.

2. Placing poles at the security boundary by varying a single
system parameter

Consider the dynamic system modeled by a set of differential
and algebraic equations (DAE) obtained by the linearization around
a steady-state operating point. The parameter value that places a
system pole at the small-signal stability or security boundary is
computed in Ref. [1] by applying the Newton method to the fol-
lowing system of nonlinear equations after expanding into their
real and imaginary parts.

f  (x0,p) = 0 (1)

[�·T − J(x0,p)]·v = 0 (2)

c·v = 1 (3)

B (�,ω) = 0 (4)

where f is a vector of functions used to calculate the initial val-
ues of the system variables defined by vector x0 that modifies the
Jacobian matrix J, T is a diagonal matrix having either ones in the
lines of differential equations and zeros in the lines of algebraic
equations, p is the parameter being changed to lead the system
to the security or stability boundary. This boundary is determined
by the locus defined by the function B, � and ω are respectively
the real and imaginary part of the system pole �, which is the
generalized eigenvalue of the linear matrix pencil (J,T), v is the gen-
eralized eigenvector of � and c is a sparse line vector used for the
normalization of v.

The objective is to solve the bifurcation problem described by
(1)–(4) considering the variation of a single parameter. Note that
this parameter may  be any system parameter or the proportional
variation factor among multiple parameters.

In the general case, f comprises the power flow equations plus
the equations related to the initialization process of the system
equipment. When the parameter p that is being changed does not
modify the network operating point, the power flow equations are
not included. When p is a controller parameter, f will contain the
equations for initialization of the internal variables of the controller
that modify J. If this controller is linear, J will not be a function of
the initial values and therefore f will not exist.

The simplest security boundary of interest is defined by a con-
stant damping ratio line (e.g. 5%). The following linear equation
defines this security boundary for ω > 0:

B (�, ω) = � + �√
1 − �2

· ω = 0 (5)

where � is the specified damping ratio. When � = 0, the geometric
locus will coincide with the imaginary axis of the complex plane,
which is the small-signal stability boundary where the Hopf bifur-
cations will occur.

3. Computing the closest security boundary in the
parameter space

A problem of much interest is the computation of the minimum
variation of a set of parameters that leads the system to the small-
signal security boundary. The metric used to measure a distance
in the parameter space can be, for example, the Euclidean norm of
the parametric variation. Thus, the minimum norm represents the
closest distance to a security boundary.

A normalized distance is considered through the division by the
nominal parameter values to avoid problems with scaling. Then,
the objective function to be minimized is the squared Euclidean
norm of the normalized parameter distance:

fobj(p) =
np∑
i=1

(
pi − pi0
pi0

)2
(6)

where p means the parameter vector of dimension np,  pi the cur-
rent value for parameter i = 1,.  . .np and pi0 the nominal value of the
parameter i.

Adopting this metric for the distance is adequate when the
parameters are not null or very small. Otherwise, the corresponding
terms should be replaced by properly weighted absolute variations:

fobj(p) =
∑
i

ai ·
(
pi − pi0
pi0

)2
+

∑
j

aj · pj
2

(7)

where i is the parameter index used for the relative measures and j
for the absolute ones. The values ai and aj are the adopted weights.
Any other nonlinear monotonic function whose magnitude rises
with the parameter variation could be adopted as objective func-
tion, but (6) revealed an adequate choice.

The problem of finding the closest security boundary consists
in minimizing this objective function subjected to the constraint
that a complex pair of poles will lie at the boundary B. This is an
optimization problem, more specifically, a nonlinear programming
(NLP) problem [18,19]. In (9)–(13) the proposed NLP equations are
presented.

Min  f obj(p) (9)

S.t. : f  (x0, p)  = 0 (10)

[�·T − J(x0, p)]·v = 0 (11)

c·v = 1 (12)

B (�,ω) = 0 (13)

The equations that define the constraints are the same ones seen
at Section 2, considering, however, that now a vector of parameters
p is varied rather than only one parameter p. The proposed algo-
rithm to solve iteratively this problem by varying a set of controller
parameters is here denominated Closest Security Boundary in the
Control Parameter Space (CSBCPS).

The constraints described by complex equations should be con-
verted into real equations, by expanding them into rectangular
coordinates:

f  (x0, p) = 0 (14)

[�·T − J(x0, p)]vRe − [ω·T]vIm = 0 (15)

[ω·T]vRe + [�·T  − J(x0, p)]vIm = 0 (16)

c  vRe = 1 (17)

c  vIm = 0 (18)

B (�,ω) = 0 (19)

This NLP problem can be written in a compact form as:

Min  f obj(p) (20)

S.t. : h(x, p) = 0 (21)

where vector x is a vector of dimension nx comprised of the vari-
ables x0, vRe, vIm, �, ω and vector h is comprised of the constraints
given in (14)–(19) of dimension nh.
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