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a  b  s  t  r  a  c  t

This  paper  proposes  a two-stage  distributionally  robust  model  for the  optimization  of  energy  and  reserve
under  uncertain  wind  power.  The  first-stage  model  considers  a day-ahead  market  that  determines  the
nominal  generation  and  reserves  before  the  realization  of  wind  power  uncertainty.  The  second-stage  deci-
sions  are made  in a realtime  market,  after  the  observation  of uncertainty,  so  that  the expected  emission
factor  is constrained  below  a target  level.  Case  studies  are  conducted  to demonstrate  that  the  proposed
method  is  capable  of effectively  capturing  the  ambiguous  distribution  of  wind  power  generation,  and  can
be  tractably  solved.  The  influence  of  different  emission  constraints  is  also discussed,  showing  the trade-off
between  lowering  the  total  operating  cost  and  reducing  the  long-term  impact  of carbon  emissions.
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1. Nomenclature

We  use bold letters to denote vectors or matrices. Entries of
vectors or matrices are regular letters with the corresponding sub-
scripts. For example, bi is the ith entry of vector b, and Amn is the
entry of matrix A in the mth row and the nth column. The nth col-
umn  of A is denoted by An. |S| is the number of elements in set S,
and ‖· ‖ is the 2-norm of a vector. The currency unit used in this
paper is US dollars ($). Other notations are listed below.

1.1. Indices and sets

a/A  Indices/set of conventional thermal units
b/B Indices/set of load buses
h/H Indices/set of energy storage systems
i/I Indices/set of random variables
j/J Indices/set of auxiliary variables
k/K Indices/set of constraints in the extended support set
l/L Indices/set of transmission lines
m/M Indices/set of uncertain constraints
P0( · ) Set of distributions of given random variables
s/S Indices/set of wind power sources
t/T Indices/set of time steps
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V Feasible set of unit commitment decisions
� Indices of time steps

1.2. Uncertainty model

F  Ambiguity set of random variables
G Extended ambiguity set
P  Distribution of random variables z̃
Q Joint distribution of vectors z̃ and ũ
ũ Auxiliary variables introduced into the extended sets
ŵst Expected wind power from source s at time t (MW)
z̃st Forecast error of wind power source s at time t (MW)
Z/Ẑ Support/extended support set of random variables

1.3. Constants and functions

Cd
a /Cu

a Cost of downward/upward reserves of unit a ($/MW)
Cs

a Cost of starting up unit a ($)
Eh Energy rating capacity of storage system h (MWh)
Fe Target of the expected emission factor (kg/MWh)
Fl(·) Function of the DC power flow for the lth line
Lbt Load at bus b, during time step t (MW)
M0 Number of rows in matrix G
Mk Number of rows in matrix Ak
N1 Number of decisions for the day-ahead market
P̄a The maximum capacity of thermal unit a (MW)
Pa The minimum capacity of thermal unit a (MW)
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Qh Power rating capacity of storage system h (MW)
Rd

a Ramp-down rate limitation of thermal unit a (MW/h)
Ru

a Ramp-up rate limitation of thermal unit a (MW/h)
Tl Transmission capacity of the lth line (MW)
Z̄st Upper bound of forecast error z̃st (MW)
Zst Lower bound of forecast error z̃st (MW)
˛a Squared term of the cost function of unit a ($/MWh2)
ˇa Linear term of the cost function of unit a ($/MWh)
�a Constant term of the cost function of unit a ($)
ıc

h
Charge efficiency coefficient of storage system h

ıd
h

Discharge efficiency coefficient of storage system h
�a Carbon emission rate of unit a (kg/MWh)
�t Constant indicating the skewness of wind power distri-

bution at time t
�1t The mean absolute deviation of the forecast error of total

wind power at time t (MW)
�2t The standard deviation of the forecast error of total wind

power at time t (MW)

1.4. Daily-ahead market decisions

d0
ht

Nominal discharge of energy storage h at time t (MW)
oat Start-up cost of thermal unit a at time t ($)
p0

at Nominal output of thermal unit a at time t (MW)
q0

ht
Nominal charge of energy storage h at time t (MW)

rd
at Downward reserve of thermal unit a at time t (MW)

rd
at Upward reserve of thermal unit a at time t (MW)

vat Unit commitment decision of unit a at time t
w0

st Nominal output of wind power source s at time t (MW)
x Vector of all daily-ahead market decision variables

1.5. Realtime market decisions and decision rule

dht(z) Discharge of storage h at time t, under uncertainty real-
ization z (MW)

pat(z) Output of thermal unit a at time t, under uncertainty real-
ization z (MW)

qht(z) Charge of storage h at time t, under uncertainty realization
z (MW)

wst(z) Output of wind farm s at time t, under uncertainty real-
ization z (MW)

y(z) Vector of all realtime market decisions, under uncertainty
realization z

ȳ(z, u) Decision rule as affine functions of random variables z and
auxiliary variables u

2. Introduction

Global warming has become a serious issue in the 21st century
[1–3], and there is a pressing need to reduce carbon emissions in
power industry. In an effort to achieve low-carbon electricity mar-
kets, clean energy technologies are applied in fast-growing scales
in modern power systems. Typical clean energy sources, such as
wind and photovoltaic power, are known to be highly uncertain and
difficult to dispatch. This is why various optimization approaches
are studied these years to model highly volatile uncertain energy
sources in joint energy and reserve optimization.

For example, stochastic programming is widely used to achieve
the optimal expected performance [4–8], where the uncertainty
of renewables is represented by a number of scenarios. Such a
scenario-representation, however, requires detailed information
on the exact probability distribution of random variables [9], which
may  be difficult to be accurately identified. Even if the detailed

distribution information is available, the number of scenarios
might grow exponentially with the increase of random parame-
ters [10]. Though various decomposition algorithms [11–13] are
developed to alleviate the computational burden, the stochastic
programming problems remain very challenging to solve. Besides
stochastic programming, chance-constrained programming [14]
also greatly replies on the precise information on probability
distributions. Chance constraints are generally non-convex and
intractable to solve, except for special cases like having Gaussian
distributed random variables [15].

Robust optimization seeks optimal solutions that are robust
against the worst-case realizations over a deterministic uncertainty
set [16], so it can be applied to energy and reserve optimiza-
tion problems [17–20] without assuming the actual probability
distribution of uncertain parameters. Similar to robust models,
the interval optimization is frequently used to protect the sys-
tem against the worst-case scenarios defined by the boundaries
of uncertain renewable generation [21–23]. However, both robust
and interval optimization approaches are unable to directly model
expected terms, because limited distribution information can be
explicitly incorporated into the uncertainty set or the uncertainty
boundaries.

In order to address these difficulties, a new method called dis-
tributionally robust optimization [24–26] has been introduced to
power system optimization [27–29]. This method characterizes
the system uncertainties by some descriptive statistics rather than
detailed distribution information, so that the worst-case expecta-
tion expressions can be formulated in the objective function or in
constraints without enumerating scenarios.

This paper proposes a distributionally robust model for the day-
ahead scheduling of energy and reserve considering uncertain wind
power generation. Constraints on the expected emission factor of
all generators, which cannot be directly modeled by conventional
robust or interval optimization approaches, are imposed to control
the long-term impact of carbon emissions. Instead of relying on
the knowledge of the exact probability distribution, the proposed
method captures the uncertainty of wind power generation by an
ambiguity set containing a collection of distributions. Compared
with the other distributionally robust models [27,28] that merely
depends on the mean values and covariance to define the ambiguity
set, our method imposes a finite support set and uses additional
distribution information, such as mean absolute deviations and the
asymmetry of distribution functions, to better describe the possible
pattern of distributions, thus improving the quality of solutions.
These statistical measures can be more easily evaluated by using
point forecast [30–34] and prediction interval approaches [35–37].
For the rest of the paper, the proposed formulation and details of
deriving a tractable robust counterpart are presented in the next
section. Case studies are provided in Section 4, and the final section
concludes our work.

3. Formulation

3.1. Uncertainty model of wind power

In this paper, the uncertain wind power is expressed as Eq. (1).

W̃st = ŵst + z̃st , ∀s ∈ S, ∀t ∈ T (1)

where ŵst denotes the expected power of wind energy source s at
time step t, determined by any forecast technologies [32–34], and
z̃st is a random variable indicating the corresponding forecast error
of wind power.
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