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a  b  s  t  r  a  c  t

This  paper  deals  with  the  identification  of  balance,  unbalance  and  distortion  components  in  unbal-
anced  three-phase  systems  with distorted  waveforms  containing  harmonics  and  interharmonics.  The
analysis  starts  from  the harmonic  distortion  and  unbalance  components  found  through  the  symmetri-
cal  component-based  (SCB)  approach  previously  defined  by  the  authors.  The  SCB  approach  is  extended
in  this  paper by  introducing  an auxiliary  reference  frequency  and  identifying  its consistency  condition
with  respect  to  the  fundamental  system  frequency.  After  defining  the auxiliary  reference  frequency,  the
proposed  approach  directly  uses  the  classical  symmetrical  component  transformation  matrix  at  any har-
monic or  interharmonic.  Various  results  are  presented,  for  conventional  test  cases  and  for  measurements
gathered  from  real  systems  with  variable  unbalanced  and  distorted  loads.  These  results  show that  the
extended  SCB  approach  is  particularly  useful  to analyze  three-phase  systems  in unbalanced  and  distorted
conditions  with  harmonics  and  interharmonics,  because  of  its simplicity  and  intuitiveness  compared  to
other approaches.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A three-phase system with periodic phase current waveforms
(period T) is defined as balanced if the phase current waveforms
are equal in shape, are regularly shifted in time of T/3 and the
sequence of phase rotation is conventional (i.e., counterclockwise).
Otherwise, the three-phase system is unbalanced. The definition of
balance works regardless of the possible waveform distortion with
respect to the sinusoid at the fundamental frequency. The clas-
sical definition of unbalance, i.e., the ratio between the negative
and the positive sequence components, takes into account only the
components at the fundamental frequency. Likewise, the classical
definition of the total harmonic distortion (THD) refers to balanced
three-phase systems only. However, in practice, unbalance, har-
monics and interharmonics [1] are simultaneously present in actual
systems.

The extraction of information concerning the levels of unbal-
ance and distortion in three-phase systems with neutral has
been addressed recently. First and second unbalance components
have been determined in [2] by considering harmonic distortion,
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resorting to different transformation matrices applied at different
harmonic orders; however, these two  components have no indi-
vidual physical meaning and are combined together to represent
the system unbalance. The symmetrical component transformation
has been applied in [3] to study the harmonic distortion due to fluo-
rescent lamps, by considering only odd harmonics and providing a
simple formulation of the neutral-to-phase current ratio in a partic-
ular case. Furthermore, the approach of [2] has been applied in [4]
to extend the definition of apparent power based on symmetrical
components to the case of non-sinusoidal waveforms.

In [5] the symmetrical component-based (SCB) approach has
been introduced to exploit the same transformation matrix from
phase quantities into symmetrical components to separate balance,
unbalance and distortion components. The rationale for this sepa-
ration is based on the fact that a balanced waveform may  contain
components at different harmonics, and the balance components
are obtained by picking up selected entries of the transformed volt-
age and current vectors at different harmonic orders. The unbalance
components are directly taken from the complementary entries
calculated by using the same transformation matrix, without the
need to create the first and second unbalance components. The
SCB balance, unbalance and distortion components are defined as
sums of squared RMS  values of the transformed components at
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each harmonic order [6]. The SCB approach has been applied in
[7] to characterize the harmonic distortion in photovoltaic systems
with different types of unbalance (that is, structural unbalance,
unbalance from partial shading, and mixed unbalance).

Recently, the approach used in [2] has been extended in [8] and
[9] to take into account interharmonics, again using different ver-
sions of the transformation matrices. An application of this method
of evaluation of unbalanced and distorted components has been
presented in [10] to characterize the disturbance compensation
obtained by active power filters. Furthermore, in [11] the use of
the Discrete-Wavelet transform has been proposed to evaluate the
symmetrical components. This approach has shown to be adequate
also for studying non-stationary distorted and unbalanced wave-
forms. The effects of unbalance, harmonics, and interharmonics on
phase-locked loop systems (PLL) have been analyzed in [12], result-
ing in the proposal of analytical formulas that characterize the PLL
phase angle and frequency errors in the presence of disturbances.

Following the same rationale used in [8], the main contribution
of this paper is to extend the SCB approach to take into account
interharmonics, providing a simple identification of the balance,
unbalance and distortion components. This extension is presented
for the general case of distorted waveforms with harmonics and
interharmonics, when the output from the measurement system is
gathered by using a proper sampling rate in the frequency domain.
The consistency conditions for proper sampling are established in
this paper by introducing an auxiliary reference frequency in the
general case. The sampling rate is then chosen in a way consistent
with current standards, in particular with Standard IEC 61000-4-7
[13] defining the harmonic and interharmonic groups and sub-
groups. Finally, the balance, unbalance and distortion indicators
are calculated with the extended SCB approach on the basis of their
corresponding components.

The rest of the paper is organized as follows. Section 2 intro-
duces the general hypotheses used in the approach presented in
this paper to deal with harmonics and interharmonics in balanced
systems. Section 3 illustrates the extension of the SCB indicators
to interharmonics for a general unbalanced system with distorted
waveforms. Section 4 shows some examples of application to test
cases and real-case measurements, highlighting the calculation of
the various components and indicators. The last section contains
the concluding remarks.

2. Assessment of the sequences in a balanced system

Let us first consider a balanced three-phase system, in which
the waveforms gathered in the time domain are subject to the Fast
Fourier Transform (FFT) in order to obtain the related components
in the frequency domain.

Let us formulate the frequency axis partitioning in two different
ways:

1. partitioning according to the nominal system frequency
f1 = 50 Hz (or 60 Hz), associated to the variable fh for the harmonic
order h = 1, . . . H, with frequency variation step �fh;

2. partitioning depending on the rate used for sampling the wave-
form in the harmonics domain, that is, 5 Hz for f1 = 50 Hz (i.e.,
10 periods for a total of 200 ms,  while 12 periods are used for
f1 = 60 Hz) as indicated in the Standard IEC 61000-4-7, associ-
ated to the auxiliary variable f̂z for z = 1, . . .,  NZ, with frequency
variation step �f̂z .

Let us now assume that the following consistency conditions are
satisfied for any integer k = 0, 1, 2, . . .:

H = 10−kNZ (1)
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Fig. 1. Identification of the positive, negative and zero sequences for a balanced
system at 5-Hz fundamental frequency (small points) and at 50-Hz fundamental
frequency (large points).

�fh = 10k�f̂z (2)

By using the FFT to process the waveform measured for a dura-
tion T = 10k/f1 with k > 0, the waveform components at frequency
multiple of 1/T  are seen as harmonics resulting from the FFT, but are
interharmonics for the system operating at fundamental frequency
f1 [8]. Because of this, in the sequel the variable z will be denoted as
interharmonic order. In particular, starting from this general con-
dition, the case k = 0 corresponds to the calculation carried out by
considering only the harmonic orders defined at frequency f1, while
the case k = 1 is the one considered in the Standard IEC 61000-4-7.

The maximum interharmonic order NZ can be linked to the
maximum harmonic order considered in the classical harmonic
analysis, for which H = 40 or H = 50 are used, by applying (1). If k = 1
the resulting values are NZ = 400 or NZ = 500, respectively.

By applying the SCB approach to the FFT results with auxiliary
fundamental frequency f̂1 = 5 Hz, if the three-phase system is bal-
anced, the components associated with positive, negative and zero
sequences are illustrated in Fig. 1. In the figure, the small points
represent the frequencies drawn with the frequency variation step
�f̂z , and the large points represent the frequencies multiple of f1.
From Fig. 1, if the consistency conditions are satisfied, the positive,
negative and zero sequences assigned to the components at the fre-
quency variation step �fh are fully consistent with the sequences
assigned to the components at the frequency variation step �f̂z .

The same concept is represented in Table 1, showing the
sequences referring to the various harmonic orders and to the
interharmonic bands defined in the standard IEC 61000-4-7 (zero
frequency included).

3. Extension of the SCB indicators

3.1. Interharmonics-based balance, unbalance and distortion
components

Let us now consider a general unbalanced three-phase system,
in which the three phase currents at the interharmonic order z = 1,

. . .,  NZ are identified by the phasors iz =
[
ĪzaĪ
z
b
Īzc
]T

, where the super-
script T denotes vector transposition. Applying the symmetrical

component transformation matrix [14] with the operator  ̨ = ej 2�
3 ,

at each interharmonic order the triplet of phase current phasors is

transformed into the new triplet izT =
[
ĪzT1 Ī

z
T2 Ī

z
T3

]T
, as follows:
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The interharmonics-based components are defined here as in
[5], by using the superscripts b for balance, u for unbalance, and d
for distortion. The notion of positive, negative and zero sequences
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