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a  b  s  t  r  a  c  t

This paper  describes  a general  methodology  for identification  of  a reduced-order  dynamic  equivalent  with
modal  frequency  distribution  to large  power  networks,  derived  from  its  frequency-varying  response.  The
method  is  used  to define  a  state  space  model  with  modal  frequency  dispersion  established  from  both,  the
application  of the  empirical  orthogonal  functions  (EOFs)  analysis  and  vector  fitting  (VF)  procedure  for
rational  functions  approximation  from  frequency-domain  data  sets.  Initially,  our  approach  uses  ortho-
gonal  modes  of  major  contributions  of spectral  dispersion  derived  from  the  EOFs  analysis  to  construct  a
reduced-order  approximation  with  applications  to  multiple-input,  multiple-output  (MIMO)  linear-time
invariant  (LTI)  systems.  This  approximation  defines  an  optimal  distributed  solution  to  the  frequency-
varying  data  set,  where  their  fundamental  properties  are  based  on  the  interpretation  of  pre-selected
frequencies  contained  into  the  eigenvectors  of  a cross-spectrum  matrix.  Once  the  reduced-order  empir-
ical modal  decomposition  is  derived,  its coefficients  are  used  in  the  VF  procedure  in order  to generate  a
rational  function  approximation  into  a frequency  band  with  particular  level  of kinetic  energy  with  appli-
cations  to MIMO  systems.  Additionally,  the  reduced-order  equivalent  network  in a  state  space  model  is
derived from  a VF,  which  can  be efficiently  incorporated  in  a  power  network  simulator  to electrome-
chanical  studies  of  multimachine  dynamics  with  modal  frequency  splitting.  Finally,  an  example  for  large
power  networks  is examined  to  both  demonstrate  the  effectiveness  for fitting  reduced-order  dynamic
equivalents  and to capture  its  modal  coherence  and  frequency  distribution.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Over the last years, many techniques using linear and non-
linear fitting routines have been proposed to fit the frequency
response of large power networks. This is in order to ensure accu-
rate equivalent models and decrease remarkably the computational
burden in simulators of transient studies where the fitting may  be
performed either in the s or z domain [1–9]. The analysis of fre-
quency range considering accuracy, the shape of the frequency
response, the mathematical model and the possibility for time-
domain implementation are examined to decide which one fitting
technique is the most appropriated. A recent problem related with
these methodologies has been the derivation of a reduced-order
equivalent model with applications to multiple-input multiple-
output (MIMO) linear-time invariant (LTI) systems, that considers
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the modal-geographical dispersion of large interconnected power
networks and its distributed implementation to multimachine sys-
tems. This represents a drawback to be efficiently incorporated into
a power systems simulator to electromechanical studies [7,10–19]
and it will be treated in this work. In [19] is presented an algorithm
for identifying a multiphase network equivalent for transient sim-
ulations of single-input single-output (SISO) systems, where the
method is limited to use the trace of the associated transfer function
matrices and to divide the network in two parts: a study zone and a
external zone, which the computational efficiency with acceptable
degree of accuracy from the results are derived. Additionally, in [2]
is given a general methodology to the order reduction of dynamic
models by using the singular value decomposition and balanced
realization techniques in SISO systems where the issues of spar-
sity, convergence, and accuracy are examined. Recently, a statistical
identification method established on the basis of the empirical
orthogonal functions (EOFs) analysis, more commonly called prin-
cipal components (PCs) analysis, has been widely applied to identify
and to extract modal instabilities from a data set. The technique
is based on the correlation structure from time-varying fields,

http://dx.doi.org/10.1016/j.epsr.2016.08.039
0378-7796/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2016.08.039
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2016.08.039&domain=pdf
mailto:pesquivelpr@conacyt.mx
mailto:ccastaneda@lagos.udg.mx
dx.doi.org/10.1016/j.epsr.2016.08.039
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which can treat both optimal modal distribution and geographical-
spatial dispersion [20–24]. This fact motivates us to extend the
EOFs analysis to the studies of frequency-domain responses of
large power networks and approaching a reduced-order equiva-
lent model with applications to MIMO  systems from a data set.
Therefore, in this paper a general methodology for identification
of a reduced-order equivalent network with modal frequency dis-
tribution to power networks derived from its frequency-domain
response, is presented. The method is used to define a state space
model with modal frequency splitting established on the applica-
tion of the EOFs analysis and the vector fitting (VF) procedure for
rational functions approximation from frequency-domain data. On
the one hand, our approach uses the orthogonal modes of major
contributions of modal coherence derived from the EOFs analysis
to construct a reduced-order approximation. This approximation
defines an optimal distributed solution to the frequency-varying
data set. The fundamental properties of this data set are based on
the interpretation of pre-selected frequencies contained into the
eigenvectors of a cross-spectrum matrix. Once the reduced-order
empirical modal decomposition is derived, its spectral coefficients
are used in the VF procedure in order to generate a rational func-
tion approximation into a particular frequency band with particular
level of kinetic energy of applications to MIMO  systems. On the
other hand, the reduced-order equivalent network given in a state
space model form is derived from the VF and efficiently incorpo-
rated in a power network simulator to electromechanical studies of
multimachine dynamics and inter-area control system design. The
procedure incorporates frequency domain responses to study and
to characterize coupling frequencies and geographical dispersion
into multiple power networks used to the analysis of its oscilla-
tory activity. In addition, the method also incorporates a procedure
based in frequency band to effectively define a reduced model from
the data used. The objective of this study is to infer the relationship
between modal frequencies and the spatial relationship of wave-
forms present within a particular frequency interval. Some of these
difficulties are discussed in the interpretation of results, where a
power network model is examined to demonstrate the effective-
ness when fitting reduced-order equivalent networks capturing its
modal coherence and distribution.

This paper is organized as follows: Section 2 introduces some
theoretical backgrounds about the EOFs analysis; the method of VF
is described in Section 3; next, the proposed method is presented in
Section 4; test results are provided in Section 5; finally, discussions
and conclusions are given in Sections 6 and 7, respectively.

2. Empirical orthogonal functions analysis

The EOFs analysis is developed to be applied for representations
of a data set X(xj, tk) ∈ R

m×n, with n � m,  where xj to j = 1, . . .,  n,
represents the spatial variables and tk with k = 1, . . .,  m,  is the time
at which the observations are made. A statistical decomposition
illustrates the phenomenon of modal distribution, which is derived
from the response of large interconnected systems. In [22–24], the
model based on the EOFs analysis is given by:

X(x, t) ∈ R
m×n = Xswc(x, t) + Xtwc(x, t), (1)

where Xswc and Xtwc denote standing and traveling waveform
components, respectively. The method is established into split a
complex autocorrelation matrix computed from the resulting data
array defined as:

C ∈ C
n×n = 1

m
XH

C (x, t)XC (x, t) = CR + iCI , (2)

with i = √−1; where the subscripts C, R and I indicate complex,
real and imaginary vectors, respectively, while the superscript H
denotes the conjugate transposed of a complex matrix. Implicit in

the model is the assumption that X(x, t) is augmented by their imag-
inary components to form a complex data matrix, XC(x, t), which
can be represented as:

XC (x, t) = ‖XC‖[cos(�XC
t) + i sin(�XC

t)], (3)

where ‖XC‖ and �XC
are the magnitude and phase of XC, respec-

tively. Under this assumption, it can be easily verified that:

CR = ‖X�
C ‖XC‖[cos(�X�

C
t)cos(�XC

t) + sin(�X�
C

t)sin(�XC
t)], (4)

and

CI = ‖X�
C ‖XC‖[cos(�X�

C
t)sin(�XC

t) − sin(�X�
C

t)cos(�XC
t)],  (5)

where can be seen that when the time is in phase with the
extremum of the cosine or sine, the resulting matrix C = CR + iCI

from (2) is a Hermitian matrix, where its real part is a symmetric
matrix, i.e.,  CR = C�

R , where the superscript � indicates transposed
vector, and CI is an asymmetric matrix or hemisymmetric matrix,
i.e., C�

I = −CI , with det(C�
I ) = 0 when its size is odd. Since the sym-

metrical matrix is a particular case of the Hermitian matrix, then
its eigenvectors are real with eigenvalue �1 > �2 · · · >0. Due to the
fact that all of the elements for the asymmetrical matrix are purely
imaginary, then it is a normal matrix, i.e.,  all of its eigenvectors are
in the complex conjugate form. Therefore, the optimal orthogonal
basis for the modal decomposition is defined by eigenfunctions
ϕR(x) and ϕI(x) for both real and imaginary parts of (2). The ortho-
gonal basis defined in the infinite-dimensional Hilbert space L2([0,
1]) are computed from the eigenvalue problem by solving the linear
system with the form C�(x) = �ϕ(x), and it is optimal in the sense
that maximizes the average projection of the response matrix X(x,
t), suitably normalized:

max
〈ϕ〉 ∈ L2([1,0])

〈| (X(x, t), 〈ϕ(x)〉)|2〉 subject to ‖ 〈ϕ(x)〉 ‖2 = 1, (6)

where |·| denotes the modulus, ||·|| is the L2-norm and 〈·〉 implies the
use of an average operation. Then, the associated approximation
to the data set in terms of a truncated sum of dominant empir-
ical modes p and q derived from the kinetic energy contribution
contained in the eigenvalue �1 > �2 · · · >0, is given by:

X(x, t) ∈ R
m×n = real

⎡
⎣ p∑

j=1

aR(j)(t)ϕ∗
R(j)(x) + i

q∑
j=1

aI(j)(t)ϕ∗
I(j)(x)

⎤
⎦ ,

(7)

where * denotes the complex conjugation with temporal
coefficients a(t) ∈ C, which are computed as:

aj(t) = 〈X(x, t), ϕj(x)〉/〈ϕj(x), ϕj(x)〉. (8)

From (7), it should be noticed that the statistical representation
given from the EOFs analysis is established through the coefficients
ϕ(x) and a(t), which represent an optimal modal distribution to
the data set. In ϕ(x) are given both, the spatial modal distribution
and the variability associated with the mode shape, while a(t) is
used to study the modal geographical dispersion. Moreover, the
phase variability shows the relative phase fluctuation among var-
ious spatial locations where the modal distribution is defined. The
modal distribution amplitude and its phase variability are com-
puted, respectively, from (7) by:

S =
√

ϕ∗(x)ϕ(x), (9)

 ̊ = tan−1
(

ϕI(x)
ϕR(x)

)
. (10)

Moreover, a measurement of the modal variability, in magni-
tude and phase, for a particular oscillation defined into the spatial
modal structure is given by a(t). This information is usually used in
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