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a  b  s  t  r  a  c  t

To  efficiently  analyze  the  stability  of  large  delayed  cyber-physical  power  systems  (DCPPS)  incorporating
wide-area  damping  controllers,  an  iterative  infinitesimal  generator  discretization-based  method  (IIGD)
for computing  critical  eigenvalues  of  the system  is  presented.  IIGD  contains  three  core  techniques  to
guarantee  efficiency  and  scalability.  First,  the sparsity  of  the  infinitesimal  generator’s  discretized  matrix,
which  possesses  identical  spectrum  to DCPPS,  is explored  by reformulating  its blocks  into  Kronecker
products.  Especially,  the  dominant  block  is factorized  as  sum  of  Kronecker  products  of  constant  Lagrange
vectors  and  system  state  matrices,  which  lays  the basis  of  further  utilizing  the  sparsities  in the augmented
state  matrices  of  DCPPS.  Second,  the  shift-invert  preconditioning  technique  is  applied  to  transform  the
required  eigenvalues  into  those  dominated  in  moduli.  Third,  the  inverse  iteration  of the discretized  matrix
involved  in sparse  eigenvalue  computation  is  iteratively  achieved  by  utilizing  the  induced  dimension
reduction  method  (IDR(s)).  Subsequently,  the  discretized  matrix–vector  product  embedded  in the  method
is efficiently  implemented  by  exploiting  the  unique  property  of  Kronecker  product  and  the inherent
sparsities  in  augmented  system  state  matrices.  The  correctness,  accuracy,  efficiency  and  scalability  of
IIGD  are  extensively  studied  and  thoroughly  validated  on  the  two-area  four-machine  test  system  and  a
real-life large  transmission  grid.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The real-life power grids with wide-area damping controllers
embedded are large delayed cyber-physical power system (DCPPS)
in nature [1], because time delays up to several hundreds of
milliseconds are introduced during processing and transmitting
wide-area measurements [2,3]. Therefore, it is critical and desirable
for small signal stability analysis methods with the ability of deal-
ing with large DCPPS, i.e., scalability, so that the time delay impacts
can be accurately evaluated. With this aim, an iterative infinitesi-
mal  generator discretization (IIGD)-based eigenvalue computation
method is presented in the paper.

1.1. Literature review

Existing studies on small-signal stability of DCPPS can be gen-
erally divided into two categories: time-domain methods and
frequency-domain methods.
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In the time domain, Lyapunov–Krasovskii functional-based
delay-dependent stability criteria have been proposed for analyz-
ing the asymptotic stability of DCPPS. Especially, the maximum
time delay that a power system can tolerate and remain stable,
i.e., delay margin, can be obtained by solving a series of generalized
eigenvalue minimization problems with linear matrix inequality
constraints [4]. However, the time-domain methods are sufficient
conditions for asymptotic stability and substantially conservative.
Their accuracies are further compromised since model reduction is
always accompanied to reduce the cumbersome computation bur-
den. In addition, only a few studies in the time domain, e.g., [5,6],
can adapt to multiple time delays.

In the frequency domain, delays are naturally transformed into
exponential terms. Correspondingly, the characteristic equation
of DCPPS becomes transcendental and has an infinite number of
eigenvalues [7]. For ease of stability analysis and control synthe-
sis, lots of efforts are made on reducing the infinite-dimensional
eigenvalue problem of DCPPS into a finite-dimensional one. Subse-
quently, critical (such as rightmost) eigenvalues of the system can
be accurately computed. According to different ways of reducing
the eigen-problem, the frequency-domain methods can be further
classified as delay substitution/approximation-based methods [8,9]
and spectral discretization-based methods [10].
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Delay substitution/approximation-based methods directly esti-
mate the exponential delay terms with suitable rational polyno-
mials. After replacing a delay term with a first-order lead-lag block
(known as Rekasius’s substitution), a finite number of eigenvalues
of DCPPS located on the imaginary axis over the whole delay span
[0, ∞)  can be exactly computed by further employing the Routh
stability criterion [11]. In addition, the Padé rational polynomial
is popular in approximating exponential delay terms, so that effi-
cient stability analysis [12] and controller design [13–17] can be
achieved. It is known that the Padé approximation generally yields
good phase approximation, but introduces a non-minimum phase
artifact in the initial transient response. For a system with com-
mensurate delays, its eigen-spectrum can be explicitly expressed
by using the Lambert–W function if system state matrices can
be simultaneously triangularized [18]. Obviously, the Lambert–W
function method only suits for a particular class of time delay sys-
tems.

Spectral discretization-based methods have been emerged as
another way for efficient eigen-analysis of DCPPS. The meth-
ods are characterized by discretization of two spectral operators,
i.e., solution operator associated with the DCPPS and infinites-
imal generator of the solution operator semigroup. Spectral
discretization-based methods have been extensively studied in the
fields of numerical analysis and computational mathematics dur-
ing the past decade [10]. Several relevant MATLAB toolboxes are
also available, including DDE-BIFTOOL [19], TRACE-DDE [20], etc.
Up to the recent few years, the methods have been applied to power
engineering community. The Chebyshev discretization of infinites-
imal generator-based method (abbreviated as IGD) suggested in
[21] was employed by Milano et al. to compute the eigenvalues
of DCPPS with single time delay, so that their impacts on system
small signal stability were evaluated [22]. In [23], IGD was further
compared with linear multi-step and Runge–Kutta discretization
scheme of solution operator (abbreviated as SOD-LMS and SOD-
RK, respectively) in computing the rightmost eigenvalues of large
DCPPS with multiple delays. Numerical studies revealed that IGD
was more accurate than SOD-LMS/RK and with less computational
burden. It is noteworthy that a GPU-based parallel implementation
of the Shur method and QR factorization was employed to speed up
the computation. To achieve this, both high-performance computer
and sophisticated programming skills were required.

1.2. Motivation and main work

From viewpoints of the authors of this paper, the applications of
IGD presented in [22,23] have two major shortcomings, preventing
themselves from analyzing large DCPPS with high efficiency. On the
one hand, low frequency oscillation modes rather than rightmost
eigenvalues are of more interests for power engineers. Precondi-
tioning techniques, such as shift-invert and Cayley transforms [24],
which are indispensable to achieve this aim, are actually absent
from IGD. In this paper, this is overcome by applying the shift-invert
transform to the wanted low frequency oscillation modes so that
they become dominant in moduli. On the other hand, IGD does not
exploit the sparsities in infinitesimal generator’s discretized matrix
and in augmented system state matrices [25], resulting in huge
computational burden and even prohibitive memory demand.

Different from the parallel implementation adopted in [23], in
our opinion, the root measure to solve this problem is to adopt
the sparsity-oriented eigenvalue algorithms and compute critical
low frequency oscillation of DCPPS. The sparse eigenvalue com-
putation is characterized by the product between the discretized
matrix’s inversion and vector. However, this is challenged by the
fact that the discretized matrix’s inversion is implicit about system
state matrices. In general, there are two ways to remedy this draw-
back of IGD and endow the method with scalability for analyzing

large DCPPS, depending on solving the involved matrix-inversion
and vector product by either direct or iterative method.

The direct solver for the matrix-inversion and vector product
in IGD is presented in our previous work [26] by designing a new
mesh grid to discretize the infinitesimal generator of DCPPS, lead-
ing to a highly structured approximate matrix. This allows one
to explicitly represent the inverse of the discretized matrix with
highly sparse augmented state matrices of DCPPS. The subsequent
matrix-inversion and vector product therefore can be directly and
efficiently implemented.

Alternatively, in this paper, the mesh grid and the resul-
tant discretized matrix of the infinitesimal generator remain
unchanged. The original IGD is further developed to endow itself
with scalability for analyzing large DCPPS by iteratively comput-
ing the matrix-inversion and vector product involved in the sparse
eigenvalue computation. The presented iterative IGD (i.e., IIGD)
consists of three core techniques. First, the sparsity of infinitesi-
mal  generator’s discretized matrix is exploited by factorizing its
dominant block into sum of Kronecker products between con-
stant Lagrange vectors and system state matrices. Second, the
shift-invert preconditioning technique is applied to transform the
required eigenvalues into those dominated in moduli. Third, a novel
subspace-based IDR (induced dimension reduction) method is
adopted to efficiently and iteratively calculate the matrix-inversion
and vector product, where the unique property of the Kronecker
product and inherent sparsities in augmented system state matri-
ces are utilized to guarantee efficiency and scalability.

1.3. Contribution

The presented IIGD offers general significance for spectral
discretization-based eigen-analysis of large DCPPS.

On the one hand, the rationale behind the explicit reformulation
of the infinitesimal generator’s discretized matrix suits for the dis-
cretized matrices of all spectral operators of DCPPS under various
discretization schemes. It lays the basis of exploiting the sparsi-
ties in both the discretized matrix and augmented system state
matrices.

On the other hand, the efficient and iterative solver for the prod-
uct between inverse of the infinitesimal generator’s discretized
matrix and vector avoids the infeasibility in analyzing large DCPPS.
Essentially, the basic idea behind the iterative solution suits for
spectral operators of DCPPS under most discretization schemes,
where the inverses of the resultant discretized matrices are only
with ordinary logic structures and implicit about system state
matrices, e.g., solution operator discretization with Runge–Kutta
and Chebyshev schemes [27,28], respectively.

1.4. Outline

The remainder of the paper is as follows. Section 2 models the
DCPPS and formulates its eigen-problem. Section 3 gives the theo-
retical background of the IGD method. Section 4 elaborates the IIGD
method. The effectiveness of IIGD is validated in Sections 5 and 6,
followed by Section 7 that draws the conclusion of the paper.

2. DCPPS modeling and eigen-problem formulation

This section establishes the model of DCPPS and formulates its
eigenvalue computation problem.

2.1. Physical nature of DCPPS

Fig. 1 illustrates the physical power system and the associated
wide-area measurement and damping control system. It is clear
that the closed-loop power system is a cyber-physical system [1].
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