
Electric Power Systems Research 143 (2017) 438–450

Contents lists available at ScienceDirect

Electric  Power  Systems  Research

j o ur nal ho me  page: www.elsev ier .com/ lo cate /epsr

AC  OPF  in  radial  distribution  networks  –  Part  I:  On  the  limits  of  the
branch  flow  convexification  and  the  alternating  direction  method  of
multipliers

Konstantina  Christakoua,b, Dan-Cristian  Tomozeic, Jean-Yves  Le  Boudeca,
Mario  Paoloneb,∗

a Laboratory for Communications and Applications 2, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
b Distributed Electrical Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
c Swisscom (Suisse) SA, INI-INO-BIX-BDM, 3050 Bern, Switzerland

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 17 July 2015
Received in revised form 5 July 2016
Accepted 15 July 2016
Available online 16 November 2016

Keywords:
OPF
ADMM
Decomposition methods
Method of multipliers
Convex relaxation
Active distribution networks

a  b  s  t  r  a  c  t

The  optimal  power-flow  problem  (OPF)  has  always  played  a key  role  in  the  planning  and  operation  of
power  systems.  Due  to the  non-linear  nature  of  the AC  power-flow  equations,  the  OPF problem  is known
to  be non-convex,  therefore  hard to  solve.  During  the  last  few  years  several  methods  for  solving  the OPF
have been  proposed.  The  majority  of them  rely  on approximations,  often  applied  to  the network  model,
aiming  at  making  OPF  convex  and yielding  inexact  solutions.  Others,  kept  the  non-convex  nature  of  the
OPF  with consequent  increase  of the computational  complexity,  inadequateness  for  real  time  control
applications  and  sub-optimality  of the  identified  solution.  Recently,  Farivar  and  Low  proposed  a method
that is claimed  to  be exact for the  case of radial  distribution  systems  under  specific  assumptions,  despite
no  apparent  approximations.  In our work,  we show  that it is,  in  fact,  not  exact.  On  one  hand,  there  is  a
misinterpretation  of the  physical  network  model  related  to the ampacity  constraint  of  the  lines’  current
flows.  On the  other  hand,  the  proof  of  the exactness  of  the  proposed  relaxation  requires  unrealistic
assumptions  and,  in  particular,  (i)  full  controllability  of  loads  and  generation  in the  network  and  (ii) no
upper-bound  on  the  controllable  loads.  We  also  show that  the  extension  of this  approach  to account
for  exact  line  models  might  provide  physically  infeasible  solutions.  In  addition  to  the  aforementioned
convexification  method,  recently  several  contributions  have  proposed  OPF  algorithms  that  rely  on  the use
of the alternating  direction  method  of  multipliers  (ADMM).  However,  as we  show  in this  work,  there  are
cases  for  which  the ADMM-based  solution  of  the  non-relaxed  OPF  problem  fails  to  converge.  To overcome
the aforementioned  limitations,  we  propose  a  specific  algorithm  for the solution  of  a  non-approximated,
non-convex  OPF  problem  in  radial  distribution  systems.  In  view  of the complexity  of  the  contribution,
this  work  is  divided  in  two parts.  In this  first  part,  we specifically  discuss  the  limitations  of  both  BFM  and
ADMM  to  solve  the OPF  problem.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The category of optimal power-flow problems (OPFs) represents
the main set of problems for the optimal operation of power sys-
tems. The first formulation of an OPF problem appeared in the
early 1960s and has been well-defined ever since [1]. It consists
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in determining the operating point of controllable resources in an
electric network in order to satisfy a specific network objective sub-
ject to a wide range of constraints. Typical controllable resources
considered in the literature are generators, storage systems, on-
load tap changers (OLTC), flexible AC transmission systems (FACTS)
and loads (e.g., [2–6]). The network objective is usually the mini-
mization of losses or generation costs, and typical constraints
include power-flow equations, capability curves of the controllable
resources, as well as operational limits on the line power-flows and
node voltages (e.g., [7]).

The OPF problem is known to be non-convex, thus difficult
to solve efficiently (e.g., [8–10]). Since the problem was first
formulated, several techniques have been used for its solution.
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Among others, non-linear and quadratic programming techniques,
Newton-based methods, interior point methods in the earlier years,
as well as heuristic approaches based on genetic algorithms, evolu-
tionary programming, and particle-swarm optimization in recent
years (e.g., [11–14]). These techniques, even though they have been
shown to successfully solve instances of the non-convex OPF prob-
lem, seek to find a local optimal solution of the OPF. They, generally,
utilize powerful general purpose solvers or in-house developed
software but they cannot guarantee the identification of the global
optimal solution. In general, they are characterized by high com-
putational complexity. The first category of approaches makes use
of gradient-based optimization algorithms or even requires the
use of Hessian matrices related to the problem. Therefore, such
techniques require several assumptions on the OPF problem formu-
lation such as analytic and smooth objective functions. Heuristics
have been applied widely in the literature as a solution technique,
for instance in cases where the OPF problem is non-smooth, non-
differentiable and highly non-linear.

Recently, the OPF problem is becoming more compelling due
to the increasing penetration of embedded generation in distribu-
tion networks, essentially composed by renewable resources.1 The
distributed nature of such resources, as well as their large num-
ber and potential stochasticity increase significantly the complexity
and the size of the OPF problem and bring about the need for dis-
tributed solutions. In this direction, several algorithms have been
proposed in the literature to handle large-scale OPF problems (e.g.,
[15–17]). Additionally, several contributions have proposed spe-
cific distributed algorithms for the solution of the OPF problem.
In [18,19] the authors design a dual-ascent algorithm for optimal
reactive power-flow with power and voltage constraints. In [20,21]
dual decomposition is used as the basis for the distributed solution
of the OPF problem. Finally, a significant number of contributions
propose distributed formulations of the OPF problem that are based
on the alternating direction method of multipliers (ADMM)  (e.g.,
[22,20,23–26]).

Recently a lot of emphasis is put on the convexification of the
OPF problem. The reason behind this emerging trend is that convex
problems provide convergence guarantees to an optimal solution
and therefore such methods can be deployed within the context of
control applications for power systems and specifically distribution
networks. However, most of the proposed convexification schemes
either do not guarantee to yield an optimal solution or they are
based on approximations that convexify the problem in order to
guarantee convergence. These approximations, often, either lead
to (i) misinterpretation of the system model [27] or (ii) solutions
that, even though mathematically sound, might be far away from
the real optimal solution, thus having little meaning for the grid
operation [28].

Recently, Farivar and Low proposed in [29,30] a convexification
of the problem that is claimed to be exact for radial networks. In
Part I of this paper, we show that this claim is not exact, as the
convexification of the problem leads to an inexact system model.
We also show that the method of ADMM-based decomposition,
which comes together with the convexification, does not work for
a correct system model. In this first part of the paper we focus on
the Farivar-Low convexification and ADMM algorithms since they
are considered as the most prominent ones by the recent literature
on the subject. As an alternative, we propose in Part II an algorithm
for the solution of the correct AC OPF problem in radial networks.

1 It is worth noting that transmission and distribution systems are different with
respect to (i) topology, (ii) electrical line parameters, (iii) power flow values, (iv)
nature and number of controllable devices. Therefore, these systems require dedi-
cated OPF algorithms that account for their specific characteristics. The focus of this
work is on OPF algorithms specifically designed for the case of distribution networks.

Like ADMM,  it uses an augmented Lagrangian, but unlike ADMM,
it uses primal decomposition [31] and does not require that the
problem be convex. We  consider a direct-sequence representation
of the electric distribution grid and we present both a centralized
and a decentralized asynchronous version of the algorithm.

The structure of this first part is as follows. In Section 2 we
present the generic formulation of the OPF problem in radial dis-
tribution systems and we classify several OPF  algorithms based
on the approximations and assumptions on which they rely. In
Section 3 we  discuss the limitations and applicability of the Farivar-
Low formulation of the OPF problem proposed in [29,30]. We
provide, in Section 4, the ADMM-based solution of the original
non-approximated OPF problem. In the same section, we highlight
specific cases where the ADMM-based algorithm fails to converge.
Finally, we provide the main observations and concluding remarks
for this part in Section 5.

2. Generic formulation of the OPF problem

2.1. Notation and network representation

In the rest of the paper, we consider a balanced radial net-
work composed of buses (B), lines (L), generators (G) and loads
(C). The network admittance matrix is denoted by Y. Several gen-
erators/loads can be connected to a bus b ∈ B. We  denote that
a generator g ∈ G or a load c ∈ C is connected to a bus by “g ∈
b” and “c ∈ b”. We  assume that the nodal-power injections are
voltage-independent. A line � ∈ L is represented using its exact �-
equivalent model and it has a receiving and a sending end denoted
by �+ and �−. Each line is connected to two  adjacent buses: ˇ(�+)
and ˇ(�−), respectively. Ȳ� denotes the longitudinal admittance of
a line, Ȳ�+

0
(Ȳ�−

0
) is the shunt capacitance at the receiving (sending)

end of the line.2 The notation adopted is shown in detail in Fig. 1
where the network branch connecting the generic network nodes
i and j is represented.

2.2. Generic OPF formulation

The traditional formulation of the OPF problem consists in min-
imizing a specific network objective:

min
S̄g ,S̄c ,S̄+

�
,S̄−

�
,Ī+

�
,Ī−

�
,V̄b

∑
g ∈ G

Cg(S̄g) +
∑
c ∈ C

Cc(S̄c) (1)

The first term of the network objective (Cg) in (1) is typically a non-
decreasing convex function accounting for the minimization of the
generation costs or the network real power losses. The second term
(Cc) is included in the objective when the cost of non-supplied load
is taken into account.

The following set of constraints is considered3:∑
g ∈ b

S̄g −
∑
c ∈ b

S̄c +
∑

ˇ(�+)=b

S̄�+ +
∑

ˇ(�−)=b

S̄�− = 0, ∀b ∈ B (2)

S̄�+ = V̄ˇ(�+)I-�+ , S̄�− = V̄ˇ(�−)I-�− , ∀� ∈ L (3)

Ī�+ = Ȳ�(V̄ˇ(�+) − V̄ˇ(�−)) + Ȳ�+
0

V̄ˇ(�+), ∀� ∈ L (4)

2 In the rest of the paper, complex numbers are denoted with a bar above (e.g., V̄)
and complex conjugates with a bar below (e.g.,V- ).

3 Note that the proposed formulation can be extended without loss of generality
to  the case of multi-phase unbalanced grids by adopting the so-called compound
network admittance matrix, (i.e., the 3-phase representation of the grid model which
takes into account the various couplings between the network phases) instead of
the single-phase equivalents. In this case, each of the constraints in (2)–(9) needs to
be  formulated separately for each network phase.
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