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a  b  s  t  r  a  c  t

This  paper  presents  a distributed  Prony  analysis  algorithm  using  data  fusion  approach.  This classic
approach  can  be  found  in  Kalman  filter’s  measurement  update.  Distributed  optimization  algorithms,
e.g.,  alternating  direction  method  of multipliers  (ADMM),  suitable  for constrained  optimization  prob-
lems,  have  been  proposed  in  the previous  literature  to develop  distributed  architecture.  In  this  article,
we  show  that  Prony  analysis,  a non-constrained  least  square  estimation  (LSE)  problem,  can  be  solved
using  the  classic  data  fusion  approach.  Compared  to the  iterative  distributed  optimization  algorithms
(e.g.,  ADMM  and  subgradient  methods),  data  fusion  takes  only  one  step.  There  is no need  for iteration
and  there  is no  issue  related  to  convergence.  This  approach  leads  to a distributed  Prony  analysis  archi-
tecture  which  requires  a much  less  demanding  communication  system  (the  bandwidth  can  be  less  than
0.1 Hz)  compared  to the conventional  centralized  Prony  analysis  for multiple  channels  which  requires  a
bandwidth  of 30 Hz.  The  application  discussed  in  this  paper  is  to identify  oscillation  modes  from  real-
world  phasor  measurement  unit (PMU)  data  and  further  reconstruct  signals.  A  key  technical  challenge
to  implement  Prony  analysis  for signals  from  multiple  channels  is  the difficulty  to  identify  the  noise
characteristics  of  each  channel.  In this  paper,  a method  is proposed  to identify  the  noise  covariances,
which  leads  to the  construction  of  a weighted  least  square  estimation  (WLSE)  problem.  This  problem  is
solved  through  a distributed  architecture.  The effectiveness  of  the  proposed  distributed  Prony  analysis
is  demonstrated  through  case  study  results.  The  accuracy  of the  estimation  is improved  in one  order
compared  with  the  centralized  Prony  analysis.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A power system is a massive system that can be perturbed by
load changes, generator trips, faults or networks changes. Power
system oscillations are common issues. To mitigate oscillations,
oscillations should be identified and studied in a timely manner.
There are two separate approaches to identify power system oscil-
lations. The first approach is based on detailed dynamic models
of the system. State-space modeling and the eigenvalue analysis
can give the system’s oscillation modes [1]. Detailed modeling of a
complicated power system is challenging and prone to errors. The
second approach is based on measurements to identify oscillation
modes. Measurement-based approach has been adopted by con-
trol engineers in practice. For example, equivalent system models
will be constructed based on the measurements and further control
strategies will be developed based on the identified system models.

With phasor measurement unit (PMU) data collected, elec-
tromechanical oscillation modes (<2 Hz) can be identified from
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these measurements at 30 Hz sampling rate. Several measurement-
based system identification have been proposed for PMU
data-based estimation, such as Kalman filters [2–4], least square
estimation [5], and subspace algorithm [6]. Prony analysis is one of
the most common measurement-based identification approaches
to identify oscillatory modes. Prony analysis has been introduced
by Hauer et al. in power systems in 1990 [7,8]. The main idea is
to directly estimate the frequency, damping and phase of modal
components of a measured signal. An extension to Prony analysis
is then introduced which allowed multiple signals to be analyzed
at the same time resulting [9].

Application of distributed optimization techniques has recently
been introduced in system modes identification [10–12]. For exam-
ple, in [10], distributed Prony analysis using alternating direction
method of multipliers (ADMM)  has been combined with central-
ized Prony method to estimate the slow frequency eigenvalues.
Simulation data generated by PST [13] toolbox of IEEE 39-bus sys-
tem is used to conduct Prony analysis. In the author’s previous
paper [14], another distributed Prony analysis algorithm using con-
sensus and subgradient update is developed. Distributed Prony
analysis presented in the aforementioned papers can be applied
to multiple signals from multiple locations collected at the same
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period of time. These algorithms can handle a large-dimension of
PMU data by solving least square estimation (LSE) problems with
small sizes in parallel and iteratively. This paper serves as a rebut-
tal of the above distributed optimization approaches: iterations are
not necessary. Indeed, Prony analysis is essentially an LSE problem
without any constraints. Prony analysis of multi-channel signals
is a multi-objective LSE problem. LSE problems were introduced
by Gauss in 1790s. In 1960s, R. Kalman designed an iterative
approach for LSE. See [15] for a detailed description. In Kalman
filter, measurement update takes one step to find the best esti-
mate given the prior information and current measurement [16].
There is no need of iteration. Compared to Kalman filter-based
approach, distributed optimization approaches are not efficient.
Kalman filter-based approach has been used in multi-sensor data
fusion [17]. In this paper, the approach is named as data fusion
approach.

In this paper, the philosophy of data fusion is examined in detail
and applied to develop an effective algorithm for distributed Prony
analysis. A key technical challenge to implement Prony analysis
for signals from multiple channels is the difficulty to identify the
noise characteristics of each channel. In this paper, a method is
proposed to identify the noise covariances, which leads to the con-
struction of a weighted least square estimation (WLSE) problem.
This problem is solved through a distributed architecture. In a
nutshell, the contribution of the paper is to implement Kalman
filter-based data fusion approach in Prony analysis with multi-
ple channels. This approach has not been seen in Prony analysis.
Compared to the other approaches where constrained optimiza-
tion problems are formulated and further been solved by iterative
distributed algorithms, e.g., [14,12], the proposed approach does
not require iterations and has advantages in computation.

The rest of the paper is as follows. Section 2 describes the fun-
damentals of Prony analysis. Section 3 describes the centralized
multi-channel Prony analysis. Section 4 presents data fusion and
distributed Prony analysis. Section 5 further examines the relation-
ship of data fusion based Prony analysis and multi-channel Prony
analysis. Section 6 presents the case study results. Section 7 con-
cludes this paper.

2. Fundamentals of Prony analysis

Consider a Linear-Time Invariant (LTI) system with the initial
state of x(t0)=x0 at the time t0, if the input is removed from the
system, the dynamic system model can be represented as [18]:

ẋ(t) = Ax(t) (1)

y(t) = Cx(t) (2)

where y ∈ R  is defined as the output of the system, x ∈ R
n is the

state of the system, A ∈ R
n×n and C ∈ R

1×n are system matrices.
The order of the system is defined by n. If the �i, pi, and qi are
the ith eigenvalue, the corresponding right eigenvector, and left
eigenvectors of A respectively, (1) can be expressed as:

x(t) =
n∑

i=1

(qT
i x0)pie

�it =
n∑

i=1

Rix0e�it (3)

where x0 is the initial state and Ri = piq
T
i

is a residue matrix. Based
on (2), the y(t) can be expressed as:

y(t) =
n∑

i=1

CRix0e�it . (4)

The observed or measured y(t) consists of N samples which
are equally spaced by �t  as: y(tk) = y(k), k = 1, . . .,  N − 1. The basic
assumption is to consider the signal record to be noise free and the

order of the system can be set as: n = floor(N/2) [7]. Therefore, (4)
can be recasted in the exponential form as:

ŷ(tk) =
n∑

i=1

Bie
�ik�t (5)

=
n∑

i=1

Biz
k
i , k = 1, . . .,  N (6)

where Bi = CRi, N is the number of samples, zi are the eigenvalues
of the system in discrete time domain, and Bi is the residue of zi. zi
can be expressed as:

zi = e�i�t (7)

Due to the fact that k = 1, . . .,  N, (6) can be expressed in matrix form
as:⎡
⎢⎢⎢⎢⎣

B1z0
1 + · · · + Bnz0

n

B1z1
1 + · · · + Bnz1

n

...

B1zN−1
1 + · · · + BnzN−1

n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ŷ(0)

ŷ(1)
...

ŷ(N − 1)

⎤
⎥⎥⎥⎦ . (8)

Or in a simple form: ZB = Y as shown in (9).
⎡
⎢⎢⎢⎢⎣

z0
1 z0

2 · · · z0
n

z1
1 z1

2 · · · z1
n

...
...

...
...

zN−1
1 zN−1

2 · · · zN−1
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

B1

B2

...

Bn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ŷ(0)

ŷ(1)
...

ŷ(N − 1)

⎤
⎥⎥⎥⎦ (9)

As the zi are the roots of the characteristic polynomial function of
the system, in order to find the zi, the coefficients of the polynomial
need to be found first. The polynomial is formed as:

zn − (a1zn−1 + a2zn−2 + · · · + anz0) = 0. (10)

While the roots zi might be complex numbers, the system poly-
nomial coefficients ai are real numbers. This feature helps develop
algorithms since real numbers will be handled by computer algo-
rithms while complex numbers cannot be directly handled.

From (10), we  have

zn = a1zn−1 + a2zn−2 + · · · + anz0. (11)

Further, a linear prediction model (12) can be formulated since y(k)
is the linear combination of zi(k) based on (6). Therefore,

y(n) = a1y(n − 1) + a2y(n − 2) + · · · + any(0). (12)

Enumerating the signal samples from step n to step N, we have
(13): Y = Da.

⎡
⎢⎢⎢⎢⎢⎢⎣

y(n)
...

y(n + k)
...

y(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷  ︸
Y

=

⎡
⎢⎢⎢⎢⎢⎢⎣

y(n − 1) · · · y(0)
...

. . .
...

y(n + k − 1) · · · y(k)
...

. . .
...

y(N − 1) · · · y(N − n)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷  ︸
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

...

ak

...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸  ︷︷  ︸
a

(13)

The best estimate of a is found from the following normal equa-
tion.

â = (DT D)
−1

DT Y. (14)

In the computing implementation, direct matrix inversion may
result in numerical inaccuracy when the matrix DTD approaches

dx.doi.org/10.1016/j.epsr.2016.10.052


Download English Version:

https://daneshyari.com/en/article/5001266

Download Persian Version:

https://daneshyari.com/article/5001266

Daneshyari.com

https://daneshyari.com/en/article/5001266
https://daneshyari.com/article/5001266
https://daneshyari.com

