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a  b  s  t  r  a  c  t

This work  presents  some  of the  computational  algorithms  used  for phasor  estimations  in Electrical  Power
Systems.  The  IEEE  C37.118.1  standard  establishes  the  phasor  estimation  structure  and  performance,  but
does not  define  the  algorithm  itself  to  be used.  Considering  this,  various  methods  can  be  adopted  pro-
vided  that  the  standard  precision  is  met.  Some  estimation  algorithms  presented  in  the  literature  were
compared  in this  paper,  and  their  behavior  was  evaluated  for some  test  cases.  The  methods:  Discrete
Fourier  Transform,  Recursive  Discrete  Fourier  Transform,  Least  Squares,  Recursive  Least  Squares,  Discrete
Wavelet  Transform  and  Recursive  Wavelet  Transform  were  tested  using  synthetic  signals,  evaluating  the
Total Vector  Error,  response  and  delay  times,  as  well  as overshoot.  The  algorithms  were  also  embedded
in  hardware  and  evaluated  by simulated  signals,  using  the  outputs  of  a  Real  Time Digital  Simulator.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Phasors are basic tools to analyze Alternating Current (AC) cir-
cuits and they can be used in communication, control and power
systems. In power systems, the voltage and current phasors are
obtained following a mathematical procedure, using the signal
samples measured by specific equipment, known as Phasor Mea-
surement Units (PMUs). These measures can provide the power
flow, stability analysis, state estimation, protection parameter def-
inition, etc.

Phasors measured at the same instant in time are called syn-
chrophasors, and the system’s structure and procedures required
for their estimation are defined in the IEEE C37.118.1 standard [1].
This standard defines the time tag, synchrophasor messaging pat-
terns, as well as tests and parameters to evaluate the measuring
process.

Despite the fact that the IEEE C37.118.1 standard establishes the
requirements for the measuring process, it does not define which
specific method should be used for phasor estimations. Therefore,
various methods have been proposed in the literature, and this
paper will address some of the main techniques available for phasor
estimation.
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The Discrete Fourier Transform (DFT) and the Least Squares
(LSQ) methods were first used to estimate phasors in the early dig-
ital relays. Ref. [2] was  one of the first studies to address those
methods for PMU  estimations, which proposed the use of DFT and
Recursive DFT (RDFT) for phasor estimations. The DFT and LSQ are
still widely used for phasor estimation in power systems [3].

The Discrete Wavelet Transform (DWT) was also used for the
same purpose in its recursive [4,5] and non-recursive [6] form.
Kalman Filters [7] and Phase-Locked Loop (PLL) [8] were used to
estimate phasors and frequency simultaneously. Fuzzy Logic [9],
Artificial Neural Networks [10,11] and Genetic Algorithms [12]
were also used as phasor estimators, obtaining accurate responses
at the expense of their complexity.

Some recent research addresses improved phasor estimation for
specific applications, such as dynamic voltage restoration [13], fault
location in series-compensated lines [14], accurate phasor estima-
tion during power swings [15,16], time-varying frequency events
[17,18], as well as system protection [19].

Despite the wide range of methods proposed in the literature,
the advantages of new techniques should be investigated and com-
pared to traditional ones. In [20], for example, the authors proposed
an analysis comparing DWT  and DFT for phasor estimation in a
digital relay. They concluded that the computational power of the
DWT  is similar to the DFT (implemented using the Fast Fourier
Transform), with no advantage to the DWT.

Within this context, this study aims to compare some meth-
ods for phasor estimations found in the literature. The following
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methods were used: DFT and RDFT [2], LSQ [21], Recursive Least
Squares (RLS) [22], DWT  [6] and Recursive Wavelet Transform
(RWT) [4]. They were evaluated under permanent and transient
conditions, using the tests defined in [1]. The algorithms were also
embedded in hardware to analyze phasor estimation during some
events simulated via a Real Time Digital Simulator (RTDS). The
processing time of the studied methods was also analyzed.

2. Studied methods

The basic theory of the methods compared in this paper will
be presented as follows. More details about each technique can be
found in Refs. [2,4,6,21,22].

The fundamental frequency of power system signals are
expressed as a sinusoid function, with amplitude

√
2X , phase �,

and frequency f0.

x(t) =
√

2Xsin(2�f0t + �) (1)

The phasor of signal (1) can be expressed as

X̄ = X∠� = Xcos� + jXsin� (2)

2.1. Discrete Fourier Transform [2]

If signal (1) is sampled by using a rate of N samples per cycle,
each sample k is expressed as

xk =
√

2Xsin
(

2�

N
k + �

)
(3)

Given N samples, relative to one cycle of the signal, the funda-
mental frequency phasor (2) can be calculated by using the DFT.

X̄ = j

√
2

N

N−1∑
k=0

xke−j 2�
N k (4)

2.2. Recursive Discrete Fourier Transform [2]

The fundamental frequency phasor of a certain data window
is calculated by (4). The phasor of the subsequent window is cal-
culated by the same expression, by changing the sum limits to
1 → N, which contains N − 1 samples similar to the previous win-
dow (0 → N − 1). Due to this feature, the phasor of the previous
window can be used to estimate the next one, by excluding one
sample (previous window) and adding the new one. If X̄r−1 is the
previous phasor, xN+r is the new sample obtained and xr is the old
one, the new phasor X̄r is estimated by

X̄r = X̄r−1 + j
2√
2N

(xN+r − xr)e−j 2�
N (r−1) (5)

2.3. Least Squares [21]

The fundamental frequency phasor is determined by using vec-
tor V, which is calculated by (6), where S is the vector containing the
data window of one cycle of the signal and Ap the pseudoinverse
of the matrix A. Elements V1 and V2 of V contain the exponential
decaying component, while elements V3 and V4 represent the real
and imaginary parts of the phasor, such as X̄ = V3 + jV4.

V = Ap × S (6)

A has dimension (N;2M + 1), and V (2M + 1 ;1), where M is the
highest harmonic considered, which is determined by the cut-off
frequency of the anti-aliasing filter. The A elements are given in

(7), where m is a harmonic, defined between 2 → M, and n is the
window sample (1 → N).

an,1 = 1; an,3 = sin
(

2�

N
k
)

; an,2m+1 = sin
(

m
2�

N
k
)

;

an,2 = k

Nf 0
; an,4 = cos

(
2�

N
k
)

; an,2m+2 = cos
(

m
2�

N
k
)

.

(7)

2.4. Recursive Least Squares [22]

The magnitude X and phase � of the phasor are given by vector
B (8), recursively calculated by using (9). A vector of zeros can be
adopted as the initial B.

B(k) = [X(k) �(k)] (8)

B(k) = B(k − 1) − e(k)R(k)U(k) (9)

e(k) is the error between the measured sample (x(k)) and the
estimated (x̂(k)), expressed as

e(k) = x̂(k) − x(k) (10)

U is the coefficient vector, expressed as

U(k) =
[

sin
(

2�

N
k + �̂(k)

)
X̂(k) cos

(
2�

N
k + �̂(k)

)]
(11)

R replaces the pseudoinverse of U and is recursively updated
by using (12). According to [22], the use of an identity matrix is
recommended for the initial R, and 0 � � < 1.

R(k) = 1
�

[
R(k − 1) − R(k − 1)U(k)U(k)T R(k − 1)

� + U(k)T R(k − 1)U(k)

]
(12)

2.5. Discrete Wavelet Transform [6]

The DWT  does not provide magnitude and phase directly,
requiring the wavelet decomposition of the measured signal (x)
and reference signals (r1 and r2). The first reference signal is a sine
function, defined as (13), while the second is a cosine, given by (14).
These signals must have N samples, such as the measured signal
data window.

r1(k) = sin(2�k/N) (13)

r2(k) = cos(2�k/N) (14)

Signals (1), (13) and (14) are filtered by Wavelet, using the Haar
function (other functions may  be adopted) in order to obtain the
approximation at the second level of x, r1 and r2: Ax2, Ar2

1 and Ar2
2;

and their Euclidean norm: |Ax2|, |Ar2
1| and |Ar2

2|, respectively. These
are used to calculate angles �1 and �2, according to (15) and (16).

�1 = cos−1

(
Ar2

1 · Ax2

|Ar2
1||Ax2|

)
(15)

�2 = cos−1

(
Ar2

2 · Ax2

|Ar2
2||Ax2|

)
(16)

Phase � is determined by{
� = �1, if �2 ≤ �/2

� = 2� − �1, if �2 > �/2
(17)

Another reference signal (r3) with phase � is defined by

r3(k) = sin(2�k/N + �) (18)
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