
Electric Power Systems Research 145 (2017) 73–82

Contents lists available at ScienceDirect

Electric  Power  Systems  Research

j o ur na l ho mepage: www.elsev ier .com/ locate /epsr

Online  parameter  and  state  estimation  of  lithium-ion  batteries  under
temperature  effects

Hicham  Chaouia,∗, Hamid  Gualousb

a The Intelligent Robotic and Energy Systems (IRES) Research Group, Department of Electronics, Carleton University, Ottawa, ON, Canada
b The LUSAC Laboratory, University of Caen-Basse Normandie, Cherbourg-Octeville, France

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 26 September 2016
Received in revised form
23 November 2016
Accepted 28 December 2016
Available online 4 January 2017

Keywords:
Lyapunov stability
State-space observer
Parameter estimation
Temperature uncertainties
Lithium-ion batteries

a  b  s  t  r  a  c  t

In  this  paper,  a hybrid  estimation  technique  is  proposed  for lithium-ion  batteries.  This strategy  makes
use  of  state-space  observer  theory  to reduce  the  complexity  of  the  design  and  the stability  analysis.
However,  the  battery’s  parameters  knowledge  is  required  for the state-space  model,  which  limits  the
performance  as  the  battery’s  parameters  vary.  Therefore,  an online  parameter  identification  strategy  is
proposed  to track  the  parameters  deviation.  The  stability  of  the closed-loop  estimation  scheme  is guar-
anteed  by  Lyapunov’s  direct  method.  Unlike  other  estimation  techniques  where  temperature  effects  are
ignored, this  paper  proposes  a universal  compensation  strategy  which  can  be  used with  many  estimation
algorithms  available  in the  literature.  The  performance  of  the  proposed  scheme  is  validated  through  a  set
of experiments  under  different  currents  and  temperatures  along  with  comparison  against  an  adaptive
observer.

© 2016  Elsevier  B.V.  All  rights  reserved.

List of abbreviations

AC alternating current
CCCV Constant Current Constant Voltage
EKF extended Kalman filter
EOL end of life
HIL hardware in the loop
LiFePO4 lithium-iron phosphate battery
NiCd nickel cadmium
NiMH nickel metal hydride
OCV open circuit voltage
PF particle filter
SOC state of charge
SOH state of health

1. Introduction

Lithium-ion batteries offer a higher power density and energy
efficiency as opposed to other types of batteries such as lead acid,
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NiMH, and NiCd [1,2]. They have received an increasing interest
because of their other numerous advantages such as rapid charge
capability, low steady-state float current, wide temperature oper-
ation range, small size, light weight, low self-discharge rate, long
life cycle, and absence of hydrogen outgassing, which make them
good candidates for many applications such as electric vehicles and
laptops [3]. SOC and SOH are crucial aspects in these applications
since they are considered as the battery’s energy and lifetime gauge,
respectively. Henceforth, a bad SOC and SOH estimation would ulti-
mately result in damaging the battery and reducing its lifespan.

A straightforward way to estimate a battery’s SOC is the Amp-
hour (Ah) balancing technique, also called Coulomb counting
method [4,5]. In this approach, SOC is determined by integrating
through time the battery’s entering and leaving currents. But, the
accumulation of the start-up and current sensor errors results into
a drift and poor accuracy [6]. Although this technique has some
serious drawbacks, it remains the simplest approach for real-time
industrial applications [4]. Another rational way to determine SOC
is to use the OCV since the battery’s voltage is directly correlated
to its charge status [7,8]. But, this correlation holds only when the
battery gets to an equilibrium state (i.e., no operation for several
minutes or hours). A hybrid estimation technique consists of com-
bining the aforementioned two  methods. Thus, Coulomb counting
technique is then used and whenever equilibrium is reached, a
reset of the accumulated errors is performed by updating the SOC
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with the OCV technique. Yet, batteries cannot reach an equilibrium
state in many applications where continuous operation is needed,
which calls on the necessity of examining other SOC estimation
alternatives.

Several advanced estimation strategies are proposed at the
cost of a higher computational complexity [9,10]. A sliding mode
observer is proposed in [11] to compensate for modeling uncer-
tainties. In [12], the SOC is derived from the charge/discharge
experimental data under different constant currents and tempera-
tures for a NiMH battery. In [13], measured current/voltage profiles
are used with an optimization procedure to estimate online the
battery’s parameters. As such, the model captures the battery’s
parameters variation. Another SOC estimation method is presented
in [14] using a reduced-order state observer. But, the knowledge of
battery’s parameters are needed for the estimation, which reduces
its precision with aging. To overcome this shortcoming, an adaptive
SOC estimation strategy is proposed for lead-acid and lithium-
ion batteries in [15,16], respectively. Then, a proportional–integral
observer is proposed in [17] to estimate the SOC of lithium-ion bat-
teries in electric drive vehicles. EKF has been used extensively to
estimate SOC and SOH [9,18,19]. Recently, in an effort to overcome
the shortcomings of Kalman filters, an adaptive EKF is suggested in
[20] for SOC estimation. In [21], support vector regression is used
for its approximation and generalization capability to determine
the battery’s SOH. Finally, online estimation of battery impedance
is achieved in [22] using excitation current generated by a motor
controller. But, many of the aforementioned techniques do not take
into consideration the impact of temperature on the estimation
which limits their use in industry. Moreover, the absence of sta-
bility proof is another factor limiting their abundance use in the
vehicular industry.

Other state-space estimation techniques are based on particle
filter which is a sequential Monte Carlo method that use weighted
random samples (particles) to estimate the probability distribu-
tion function of any nonlinear system. Several PF-based battery SOC
estimation methods are suggested in the literature for lithium-ion
batteries [23–25]. In [23], the battery is considered as a nonlin-
ear dynamic system with the SOC of the battery as the only state
variable. Classical Kalman filtering approaches show limitations
in handling nonlinear and non-Gaussian error distribution prob-
lems. In addition, uncertainties in the battery model parameters
must be taken into account to describe the battery degradation. In
[24], a model-based method is presented combining a sequential
Monte Carlo filter with adaptive control to determine the cell SOC
and its electric impedance. The applicability of this dual estimator
is verified using measurement data acquired from a commercial
LiFePO4 cell. Due to a better handling of the hysteresis, results
show the benefits of the proposed method against the estimation
with an extended Kalman filter. In [25], another state estimation
technique is presented for lithium-iron phosphate batteries where
a PF overcomes the problem of the variance and the mean of a
Gaussian probability density function by using Monte Carlo sam-
pling.

On another aspect, soft-computing tools such as neural network
and fuzzy logic systems have been acknowledged in numer-
ous applications as robust tools for systems under uncertainties
[26–29]. Several intelligent algorithms have been proposed for
the SOC and SOH estimation, which have performed satisfactorily
[30,31]. But, neural networks remain incapable of incorporating any
human-like expertise already acquired about the dynamics of the
system in hand, which is considered one of the main weaknesses of
such methodologies. This weakness has been overcome in [32] with
a fuzzy neural network. However, these tools achieve outstanding
performance at the expense of a heavy computation. Furthermore,
they are based on heuristic and tuning may  not be trivial. Addition-

Fig. 1. Equivalent electric circuit of a lithium battery.

ally, many soft-computing based observers lack stability proofs in
several estimation applications.

The battery’s open circuit voltage estimation scheme is based on
a state-space observer, which reduces design complexity. However,
it requires the battery’s parameters, which are known to be time-
varying. Therefore, an adaptive parameters identification strategy
is proposed using a Lyapunov-based adaptation law for online
parameters estimation. Thus, robustness to parametric uncertain-
ties is achieved, which yields better accuracy as the battery ages
compared to classical methods. Henceforth, accurate estimation of
the battery’s open circuit voltage and equivalent series resistance
leads to precise state of charge and state of health determination.
The stability of the closed-loop estimation scheme is guaranteed
by Lyapunov’s direct method unlike many online estimation meth-
ods. But, temperature is known to introduce a drift in the estimates.
In this paper, a universal temperature compensation method is
also proposed, a weakness of many estimation strategies in the
literature. This work is one of the first attempts, if any, in achiev-
ing both SOC and SOH estimation with guaranteed stability taking
into account temperature effects. The effectiveness of the proposed
method is verified experimentally under different currents and
temperatures.

The rest of the paper is organized as follows: Section 2 outlines
the circuit model for lithium-ion batteries along with their dynam-
ics. The proposed estimation approach along with the temperature
compensation technique is detailed in Sections 3 and 4. In Section 5,
experimental results are reported and discussed. We  conclude with
some remarks and suggestions for further studies pertaining to this
problem.

2. Lithium-ion batteries

2.1. Modeling

The electric circuit model of a lithium battery is shown in Fig. 1.
This model is used to describe the electrochemical phenomena such
as double layer and mass transport effects. Although there is phys-
ical explanation between the electric circuit model components
and the battery’s chemical reactions, an equivalent circuit model is
mainly established to match experimental data for a practical oper-
ating frequency range. The voltage-current characteristic dynamic
mathematical model can be described by the following equations
[33–35]:

V̇p = 1
RC

Vp − 1
C

Ib (1)

Vb = Voc + Vp + RbIb (2)

where Vocis the open circuit voltage, Vb and Ib are respectively
the voltage and the current at battery terminals, Rb is the internal
resistance, R and C are the equivalent resistance and capacitance,
respectively, and Vp is the voltage across the RC network.
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