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Abstract

A new computational method for the linear eigensolution of structural dynamics is proposed. The eigenvalue problem is theoretically
transformed into a specific initial value problem of an ordinary differential equation. Based on the physical meaning of the sign count of
the dynamic stiffness matrix, a stability control device is designed and combined with the fourth-order Runge–Kutta method. The result-
ing method finds the eigenvalues and eigenvectors at the same time, with high accuracy and high stability. Numerical examples show that
the proposed method still gives high accuracy solutions when there is a great difference in magnitude among the eigenvalues, and also
when some eigenvalues are very close to each other.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the natural frequencies and modes of vibration take an essential role in structural dynamics, it is a very important
aim to have reliable and accurate methods for solving the eigenvalue problem of a structure. However, the computation of
structural eigenvalues and eigenvectors remains a difficult task even now. Difficulties arise from both the discretization of
the structure (e.g., by the finite element method) and the procedures of numerical analysis. When the higher natural fre-
quencies of a structure are desired, smaller elements should be used [1–4], resulting not only in an increased order of
the matrices representing the structure but also in an increased propensity of these matrices for ill-conditioning. Therefore,
highly stable and high accuracy computational methods for eigensolutions of structures are necessary to obtain the eigen-
pairs with good precision.

Among existing numerical methods for the eigensolution, the subspace iteration method has been widely used [5–11]. In
spite of its many capabilities, sometimes this method is sensitive to the initial trial values of eigenvalues and eigenvectors
and some eigenpairs of interest may be missed as a result of numerical instability.

As an alternative to finding the eigenvalues directly, a few methods [12,13], such as the Wittrick–Williams algorithm [13–
17], try to find bounds on the eigenvalues by counting the number of eigenvalues exceeded at each of a sequence of trial
frequencies. The procedure to locate the bounds employs only the signs of the diagonal elements of the upper triangular
matrix resulting from Gauss elimination of the dynamic stiffness matrix. As a result, the method is so stable that it has been
regarded as infallible [13]. However, if the sequence of trial frequencies is chosen by the bisection method, only linear
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convergence on the eigenvalues can be achieved, and the solution of eigenvectors does not benefit from the method.
Although efforts to improve the convergence and the computation of eigenvectors have been made by some authors
[16–18], further work is needed in this area.

Such root-counting methods have generally been applied to the transcendental eigenvalue problems arising from ana-
lytical solutions of the governing differential equations of the structural members. The object of this paper is to exploit the
high stability of root-counting methods by applying them to the conventional linear eigenvalue problem, in order to obtain
eigenvalues and eigenvectors with high accuracy.

2. Sign count of dynamic stiffness matrix

The linear eigenvalue problem in structural dynamics can be stated mathematically as attempting to find a positive real
parameter k in the equation

KDðkÞ � ðK� kMÞx ¼ 0; ð1Þ
so as to make the n-dimensional vector x non-trivial, where the n · n dimensional real, symmetric, non-negative definite
matrices K and M are the static stiffness and mass matrices, respectively. It is well known that there exists a non-singular
matrix X whose ith column is the eigenvector xi associated with the eigenvalue ki, which satisfies

XtKDð�kÞX ¼ Diagðk1 � �k; . . . ; ki � �k; . . . ; kn � �kÞ. ð2Þ
By virtue of Sylvester�s law of inertia [9], if a series of non-singular matrices P1, . . . ,Pm is found such that

Pt
iKDð�kÞPi ¼ Di ði ¼ 1; . . . ;mÞ; ð3Þ

where each of the Di (i = 1, . . . ,m) is a diagonal matrix, then each Di has the same number of negative elements, called the
sign count of the dynamic stiffness matrix KDð�kÞ and denoted sfKDð�kÞg. Moreover, Eq. (2) shows that sfKDð�kÞg equals the
number of eigenvalues exceeded by �k.

Knowing sfKDð�kÞg enables bounds on the eigenvalues to be obtained. For example, a trial frequency �kk1 is a lower
bound on the kth eigenvalue kk if sfKDð�kk1Þg < k, or an upper bound if sfKDð�kk1ÞgP k. Once lower and upper bounds
have been found, convergence on kk is achieved by successively evaluating the sign count at trial frequencies lying between
the two bounds.

Since only the signs, and not the values, of the elements of the corresponding diagonal matrix are needed when evalu-
ating sfKDð�kÞg, the sign count is quite insensitive to numerical errors. It is this feature of the sign count that makes the
algorithms based on it almost infallible.

3. Reduction of dynamic stiffness matrix to diagonal

A generalized inner product of two vectors pi and pj of order n is introduced as

ðpi; pjÞ ¼ pt
iKDð�kÞpj. ð4Þ

Any set of independent vectors p
ð1Þ
1 ; p

ð1Þ
2 ; . . . ; pð1Þn of order n can be transformed to an orthogonal set p1,p2, . . . ,pn, in the

spirit of the method of modified Gram–Schmidt orthogonalization, as follows. The first desired vector is simply chosen
as p1 ¼ p

ð1Þ
1 . Then, for k = 2, . . . ,n, after performing the transformations

p
ðkÞ
i ¼ p

ðk�1Þ
i �

�
pk�1; p

ðk�1Þ
i

�
ðpk�1; pk�1Þ

pk�1 ði ¼ k; . . . ; nÞ; ð5Þ

the kth vector is chosen as pk ¼ p
ðkÞ
k . If ðpðkÞk ; p

ðkÞ
k Þ ¼ 0, but ðpðkÞk0 ; p

ðkÞ
k0 Þ 6¼ 0 for some k 0 > k, then p

ðk�1Þ
k0 is exchanged with p

ðk�1Þ
k

to make the choice valid.
It can be seen from Eq. (5) that pk is a linear combination of p

ð1Þ
i (i = 1, . . . ,k � 1). If each p

ð1Þ
i is selected as the ith

column of the unitary matrix of order n, then the components of pk have the feature that pkk = 1 and pkj = 0 for j > k.
The matrix P whose kth column is pk is an upper triangular matrix whose diagonal elements are all unity, and satisfies

PtKDð�kÞP ¼ D; ð6Þ

where D is a diagonal matrix. Being real and symmetric, the dynamic stiffness matrix can be uniquely decomposed into the
form

KDð�kÞ ¼ LdDLt
d ; ð7Þ

where Ld is a lower triangular matrix. Comparison between Eqs. (6) and (7) gives
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