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a  b  s  t  r  a  c  t

To  improve  the accuracy  of  the  DC network  model,  we re-examine  the  power  flow  equations  and  propose
an  improved  network  model  for optimal  power  flow  (OPF)  calculation  with  reactive  power  and  network
losses.  Voltage  angle  and  the  square  of voltage  magnitude  are  used  as  independent  variables.  A  mathe-
matical  transformation  of the  nonlinear  voltage  magnitude  term  is used,  which  decomposes  the  voltage
magnitude  term  to a  linear  expression  and  a  quadratic  expression.  The  quadratic  expression  presents
the  influence  of voltage  magnitude  on network  losses.  To  handle  the  non-convexity  of  the  OPF  model
caused  by  the  network  losses,  a  convex  relaxation  method  is  used. The  relaxed  model  and  the  proposed
OPF  model  are  typically  equivalent  in transmission  systems.  Methods  of  restricting  the  potential  relax-
ation  errors  are introduced.  It is shown  that  the  accuracy  of  the  proposed  network  model  can  be further
improved  with  initial  points  of  voltage  angles.  Case  studies  in several  IEEE benchmark  systems  validate
the  performance  of  the proposed  formulation  and  approach.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Literature review

Optimal power flow (OPF) calculations are fundamental to power
system planning and scheduling, market clearing and many other
applications. Considering the large quantity of electric energy pro-
duction and consumption around the world, improvements in OPF
solutions could result in annual savings of billions of dollars for
power industries [1].

The OPF problem was first formulated in the 1960s [2]. It has
been proven to be a rather difficult problem to solve, mostly
because of the intractability of AC power flow equations. There
has been massive research into the development of efficient algo-
rithms to solve the AC OPF models. Conventional methods often
involve iterative solving based on an initial guess [3–7]. Succes-
sive linear approximation approach is proposed in Refs. [8–10].
There are also efforts that use artificial intelligence techniques
to solve AC OPF models [11,12]. Recently, solving the AC OPF
problem via convexification approaches attracts research inter-
ests. The formulations include semidefinite relaxation (SDR) [13–15],
quadratic convex relaxation (QCR) [16] and second-order cone relax-
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ation (SOCR) [17–21]. The solutions from the relaxations always
provide a lower bound for the original OPF problem. Nevertheless,
it is hard to recover an AC feasible solution when the optimal con-
dition does not hold. The gap between the SDR solution and the AC
OPF solution could be up to 30% [16]. SOCR is more computationally
efficient than the SDR [22]. However, the SOCR method can result
in a significant deficit in the modelling accuracy in a simple radial
network [23]. A sufficient condition for the convex relaxation of the
SOCR model in distribution networks is provided in Ref. [21]. In Ref.
[24], a strong SOCR method is proposed to extend the application of
the SOCR to the meshed networks. The accuracy is greatly improved
over the traditional SOCR method. Because constraints that ensure
the coupling relationship among voltage angles are required for
every loop in the network, the computational burden increases in
heavily meshed networks.

To solve the OPF model more efficiently and robustly, industries
seek approximated network models to reduce the computational
burden of the OPF problems. By using such simplified network
models, the nonlinearity and nonconvexity of the OPF model are
reduced at the expense of a reasonable loss in accuracy. The linear
“active power only” DC network model is one of the representa-
tives [25]. In the DC network model, losses and reactive power
are completely ignored. As a result, the DC OPF model may  lead to
less economical and even insecure solutions, especially in stressed
systems and systems with strong coupling between active and reac-
tive power [8]. To improve the accuracy of the DC network model,
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Nomenclature: Listed below are the main mathematical
symbols used throughout this paper for quick reference.

Variables and parameters
gij/bij Conductance/susceptance of branch (i,j)
Gij/Bij Real/imaginary part of Yij
N Number of buses
Pd,i/Qd,i Active/reactive load consumption at bus i
Pg/Qg Generator active/reactive power production
Pi/Qi Active/reactive power injections at bus i
PL
i
/QL

i
Active/reactive network losses allocated to bus i

Pij/Qij Active/reactive power flows on branch (i,j)
vi Voltage magnitude at bus i

vs
ij,s

vs
ij,s

=
(

v2
i

− v2
j

)2

Yi j The (i, j) entry of the admittance matrix Y
�ij Voltage angle difference between buses i and j
�ij,s �ij,s = �2

ij

�, w, ˛, ˇ, �, �, �, �, ϑ, 	, 
, ϕ, � Dual variables

Vectors and matrices
Pg/Qg Vector of generator active/reactive power produc-

tion
vm/� Vector of voltage magnitude/angle
vs [v2

1, v2
2,. . .,v2

N]

Sets
N, K, G Sets of buses, branches, and generators

network losses and reactive power need to be modelled. In exist-
ing research, losses are usually expressed as a function of �2 in
the DC network model [26–29]. Methods that handle the non-
convexity caused by the quadratic loss terms include the convex
relaxation method [26] and the piecewise linearization method
[27–29]. The accuracy of the modelling of losses still has room
to improve, because the influence of voltage magnitude on losses
has not been included. For reactive power, there are methods pro-
posed that incorporate the reactive power and voltage magnitude
in the DC network model via analysing the Taylor series expan-
sion. In Ref. [28], an improved network model is obtained. Except
for quadratic loss terms, the network model is linear with voltage
angles and off-nominal voltage magnitude as variables. Piecewise
linear approximation is used to handle the quadratic loss term.
Integer variables are introduced to avoid the approximation errors.
Convex relaxation approach is discussed as well and the physical
insight of the relaxation is provided. The network model described
above is used for transmission planning problems in Ref. [29]. For
the network models used in Refs. [28] and [29], the accuracy of
the voltage magnitude terms can be further improved. Because the
first-order Taylor series expansion of the voltage magnitude terms
is used in the network model, the influence of voltage magnitude
on network losses is ignored. The accuracy of the approximation
for the nonlinear voltage magnitude terms is crucial for accurately
modelling the reactive power, voltage magnitude, and network
losses. In this paper, we use a mathematical transformation to pro-
vide a better approximation for voltage magnitude terms.

1.2. Contributions

For existing approximated network models, there is still room
to improve, especially for the modelling of the voltage magnitude
and network losses. To address these aspects, an improved network
model for OPF with consideration of reactive power and network
losses is proposed. This paper provides following contributions:

1) A novel network model with reactive power and network losses
is proposed. To take advantage of the quasi-linear relationship
of P-�, the polar coordinate power flow equations is used. To
improve the accuracy of the modelling of voltage magnitude and
reactive power, a mathematical transformation for the nonlinear
voltage magnitude term is used. The voltage magnitude term
is decomposed into a linear term that reflects the influence of
voltage magnitude on the power distribution and a quadratic
term that reflects the influence of voltage magnitude on network
losses. Case studies confirm that the proposed network model
is more accurate than several existing approximated network
models, including the network models used in Refs. [26] and
[27] and the network models used in Refs. [28] and [29].

2) A convex relaxation method is used to handle the non-convexity
brought to the proposed OPF model by the loss terms. The phys-
ical insight of the relaxation is illustrated. The relaxation model
and the proposed OPF model are equivalent under certain con-
ditions, which are typically satisfied for transmission systems.
Cuts are added in case the conditions do not hold.

3) A warm-start network model using the initial point of voltage
angles is proposed, which can further improve the performance
of the OPF model. Due to the quasi-linear relationship of P-�
in transmission systems, a high-quality initial point of voltage
angles is easily accessible (for example, use the DC  OPF method).
The proposed warm-start method provides a guidance for for-
mulating more accurate network models using initial points of
voltage angles.

2. Derivation of the proposed network model

In this section, the power flow equations are analysed from the
original form. The obtained network model will be the basis of the
proposed OPF method.

The power flow equations are as follows:

Pi(vm, �) =
N∑
j=1

(vivjGij cos �ij + vivjBij sin �ij) (1)

Qi(vm, �) = −
N∑
j=1

(vivjBij cos �ij − vivjGij sin �ij) (2)

The branch flow expressions are as follows:

Pij(vm, �) = (v2
i − vivj cos �ij)gij − vivjbij sin �ij (3)

Qij(vm, �) = −(v2
i − vivj cos �ij)bij − vivjgij sin �ij (4)

To simplify the power flow equations, the second-order approx-
imations of the sine and cosine functions are used:

sin �ij ≈ �ij, cos �ij ≈ 1 −
�2
ij

2
(5)

Substituting (5) into (1) and (2), the following expressions can
be obtained:

Pi =
N∑
j=1

Gijvivj +
N∑
j=1

Bijvivj�ij +
N∑
j=1

(−Gij)vivj
�2
ij

2
(6)

Qi = −
N∑
j=1

Bijvivj +
N∑
j=1

Gijvivj�ij +
N∑
j=1

Bijvivj
�2
ij

2
(7)

In (6) and (7), vivj and �ij are tightly coupled in the last two  terms.
Regarding vivj as a whole, the first-order Taylor series expansions of
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