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Abstract

We reconsider the numerical solution of linear(ized) advection–diffusion–reaction problems using higher-order finite elements
together with stabilized Galerkin methods of streamline-diffusion type (SUPG) and with shock-capturing stabilization. The analysis
improves the a priori analysis in our previous paper [T. Knopp, G. Lube, G. Rapin, Stabilized finite element methods with shock cap-
turing for advection–diffusion problems, Comput. Methods Appl. Mech. Engrg. 191 (2002) 2997–3013]. The theoretical results are sup-
ported by some numerical experiments.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The motivation of the present paper stems, e.g., from the finite element simulation of the non-isothermal and incom-
pressible Navier–Stokes problem

ot~u�r � ðmr~uÞ þ ð~u � rÞ~uþrp ¼ �bh~g; ð1Þ
r �~u ¼ 0; ð2Þ
othþ ð~u � rÞh�r � ðarhÞ ¼ _qV =cp ð3Þ

for velocity~u, pressure p and temperature h in a polyhedral domain X � Rd, d 6 3, with source terms bh~g and _qV =cp. This
model describes, e.g., the air flow in buildings, etc. [17]. The momentum and continuity Eqs. (1) and (2) describe the fluid
motion; the heat transfer is driven by the advection–diffusion Eq. (3).

Turbulence may occur at high Rayleigh or Reynolds numbers. A standard approach is to consider the Reynolds aver-
aged Navier–Stokes equations (RANS) together with, e.g., the k–� turbulence model. Within a statistical turbulence model
only averaged values are considered. An eddy viscosity ansatz for turbulent effects is modeled as an additional diffusion
term with eddy viscosity mt. Then the averaged values for~u, p and h are determined by (1)–(3) with m and a replaced with
(variable) viscosities me = m + mt and ae = a + mt/Prt. The eddy viscosity term mt is determined, e.g. in the k–� turbulence
model, by mt = clk2/� where the turbulent kinetic energy k and the dissipation rate � of k are defined by additional (non-
linear) advection–diffusion–reaction equations.

A standard algorithmic treatment of the coupled model is to semi-discretize, in an outer loop, in time (with possible step
control) using an A-stable method and then, in an inner loop, to decouple and linearize the resulting system. A block
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Gauss–Seidel method with fixed point or Newton-type iteration per time step leads to linearized Navier–Stokes problems
(of Oseen-type) and linearized advection–diffusion–reaction problems as auxiliary problems, see [17]. A proper numerical
approach to the latter model

Lu :¼ �r � ðaruÞ þ~b � ruþ cu ¼ f in X ð4Þ
is an important ingredient of the approach and will be discussed in this paper.

The streamline upwind Petrov–Galerkin (SUPG) method, proposed by Brooks and Hughes [1], was the first variation-
ally consistent, stable and accurate finite element model for advection-dominated problems. It initiated the development
of stabilization techniques for advection-dominated and related problems. For an overview, see, e.g., [14]. A first
relevant analysis of the SUPG method can be found in Johnson et al. [15] in case of regular solutions. The theory
has been refined over the years in several directions. Here we only mention the analysis of a hp-version by Houston
and Süli [12].

Nevertheless, for non-smooth solutions, localized oscillations of the SUPG solution may still exist in the neighborhood
of steep gradients. As a remedy, discontinuity- or shock-capturing terms can be added to enhance the stability. Linear (but
non-consistent) schemes for low-order elements are considered, e.g., in [16,22]. Mizukami/Hughes [13] introduced the first
nonlinear discontinuity-capturing schemes DC1 and DC2. The idea was to enhance, additionally to streamline upwinding,
numerical viscosity in the direction of $uh. The consistent approximate upwind (CAU) in [9] provided a further refinement.
For recent developments of the CAU scheme to higher-order elements, we refer to [10]. Moreover, Codina considered in
[5,6] the discontinuity-capturing/crosswind-dissipation (DC/CD) scheme with additional anisotropic viscosity. The impor-
tant question of low-order (nonlinear) schemes which satisfy a discrete maximum principle is discussed in the recent papers
[2,3], see also the monograph [8].

A first theoretical result for such nonlinear schemes is seemingly due to Szepessy [23]. In our previous paper [18] we
considered the a priori analysis of a rather general class of shock-capturing schemes. The goal of the present paper is
an extension of the stabilized higher-order FE method of the recent paper [12] to the case of shock-capturing stabilization.
In particular, we address the choice of the stabilization parameters, see Section 2, extend and refine the analysis of shock-
capturing schemes given in [18], see Section 3, and provide some numerical experiments, see Section 4.

2. Stabilized FEM for advection–diffusion–reaction model

Following basically [12], we describe and analyze the SUPG-stabilization of the advection–diffusion–reaction model. In
contrast to [12], we give a refined definition of the stabilization parameters depending on all critical parameters.

2.1. Problem statement

For the advection–diffusion–reaction scheme (4), we assume a; c 2 L1ðXÞ, ~b 2 ðH 1ðXÞÞd \ ðL1ðXÞÞd , f 2 L2(X) and

ðr �~bÞðxÞ ¼ 0; cðxÞP x P 0; aðxÞP a0 > 0; a.e. in X. ð5Þ
For simplicity only, we analyze the homogeneous Dirichlet problem

u ¼ 0 on oX. ð6Þ
The basic variational formulation of (4)–(6) reads:

Find u 2 V :¼ H 1
0ðXÞ s.t. Aðu; vÞ ¼ lðvÞ 8v 2 V ð7Þ

with

Aðu; vÞ ¼ ðaru;rvÞX þ ð~b � ruþ cu; vÞX; ð8Þ
lðvÞ ¼ ðf ; vÞX. ð9Þ

2.2. Finite element discretization

Suppose a family of admissible triangulations Th ¼ fTg of the polyhedral domain X where h is the piecewise constant
mesh function with h(x) = hT = diam (T), x 2 T. We assume that Th is shape-regular, i.e. there exists a constant Cr 5 Cr(h)
such that

Crh
d
T 6 meas ðT Þ 8T 2 [hTh. ð10Þ

Moreover, we assume that each element T 2Th is a smooth bijective image of a given reference element bT , i.e., T ¼ F T ðbT Þ
for all T 2Th. Here, bT is the (open) unit simplex or the (open) unit hypercube in Rd.
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