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Abstract

The incompressible Navier–Stokes equations are discretized in space by a finite difference method and integrated in time by the
method of lines and a semi-explicit method. In each time step a set of systems of linear equations has to be solved. The size of the time
steps is restricted by stability and accuracy of the time-stepping scheme, and convergence of the iterative methods for the solution of the
systems of equations. The stability is investigated with a linear model equation derived from the Navier–Stokes equations on Cartesian
grids. The resolution in space and time is estimated from turbulent flow physics. The convergence of the iterative solvers is discussed with
respect to the time steps. The stability constraints obtained from the model equation are compared to results for a semi-explicit integrator
of the Navier–Stokes equations with good agreement. The most restrictive bound on the time step is given by accuracy, stability, or con-
vergence depending on the flow conditions and the numerical method.
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1. Introduction

Direct simulation of the Navier–Stokes equations (DNS) is a computational tool to study turbulent flow. Spectral and
pseudospectral methods have been developed for this purpose but they are restricted to simple geometries such as straight
channels. For more complex problems a finite difference or finite element method is more suitable. Examples of such meth-
ods are found, e.g., in [5,7,32]. DNS calculations are computationally very demanding with long execution times and large
memory requirements. One important issue is how the equations are discretized in space. Another question is how to inte-
grate the equations in time. Given the space discretization, the time derivatives are usually approximated by a standard
method for ordinary differential equations [21] or a combination of such methods. The scheme may be implicit [12,42],
semi-implicit [17,42], semi-explicit [7,24], or explicit [13,41]. Then in each time step there are in general one or more systems
of linear equations to solve for the velocity and the pressure. Preferably the systems of equations are solved by iterative
methods since they are superior in efficiency and memory requirements for large problems. In this solution strategy, the
time step shall be chosen so that

1. The integration is stable.
2. The solution is sufficiently accurate in time.
3. The iterative solvers converge quickly.
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Less computational work is spent in a time interval if the time steps are long, but long time steps may be in conflict with
all three requirements above. Ideally the solution algorithm should be such that only accuracy restricts the time step but
this is seldom possible for nonlinear problems. In this paper we investigate this matter and derive bounds on the time step
imposed by the stability, accuracy, and convergence for semi-explicit methods in general and the integration method with
the finite difference space discretization in [7] in particular.

The Navier–Stokes equations for incompressible flow in two dimensions (2D) in the primitive variables are as follows.
Let u and v be the velocity components in the x- and y-directions, respectively, p the pressure, and m the kinematic viscosity.
The Reynolds number is defined by Re = ub‘/m for some characteristic velocity ub and length scale ‘. Let w = (u,v)T. Intro-
duce the nonlinear and linear terms

NðwÞ ¼ ðw � rÞw; Lðw; pÞ ¼ rp � Re�1Dw.

Then the Navier–Stokes equations in 2D are

otwþNðwÞ þLðw; pÞ ¼ 0; ð1Þ
r � w ¼ 0. ð2Þ

The space discretizations of N and L in (1) and $Æ in (2) are denoted by Nh and Lh and $hÆ. Suppose that the solution
in space wn is known at time tn and that we intend to compute wn+1 at tn+1 with the time step Dt = tn+1 � tn. In an implicit
method, wn+1 fulfills

wnþ1 þ c1DtNhðwnþ1Þ þ c2DtLhðwnþ1; pÞ ¼ bn
impl; ð3Þ

where c1 and c2 are constants depending on the method and bn
impl depends on previous solutions wn, wn�1, . . . In a semi-

implicit method the convection term is linearized by introducing a previous solution �w in the iterations in the approxima-
tion of Nh such that Nhðwnþ1Þ � ð�w � rÞwnþ1. The nonlinear term is treated explicitly in a semi-explicit method

wnþ1 þ c1DtLhðwnþ1; pÞ ¼ bn
sexpl; ð4Þ

where bn
sexpl includes Nh and depends on wn,wn�1, . . . In an explicit scheme, also the linear term is evaluated from previous

solutions

wnþ1 ¼ bn
expl; ð5Þ

so that wn+1 is updated without the need to solve a system of equations for the velocity.
The integration method in [7,8,33] is semi-explicit as in (4) and second order accurate with a fourth order accurate com-

pact finite difference discretization of the space derivatives in 2D [9,27]. The solution is expanded in a Fourier series in the
third dimension [8]. The system of linear equations for wn+1 and p in each time step is solved in one outer and two inner
iterations. The analysis developed here is applied to this method as an example. Although the stability analysis is restricted
to this particular space discretization on Cartesian equidistant grids including a linearization, we believe that the trends are
more generally applicable to other spatial approximations. The stability constraints are e.g., modified only slightly for a
second order method.

There are different options to satisfy the incompressibility condition (2) and to determine the pressure p at tn+1. One
possibility is to compute a provisional w* and then add a correction so that (2) is satisfied in a pressure correction method
or a projection method [4,6,13,15,41,23]. An approximate factorization is determined in a fractional step method to obtain
two simpler systems of equations [11,14,26,36]. Another way is to solve (3) or (4) and (2) for wn+1 and p simultaneously and
iterate until convergence as in [7,17,43].

The stability and accuracy of semi-explicit (or mixed explicit/implicit) integration methods for the incompressible
Navier–Stokes equations are investigated in [24]. The length of the time steps is studied in [12] for turbulent flow with
an implicit treatment of Nh and Lh. A discussion of appropriate time steps for accuracy and stability in turbulent flow
is found in [19]. The stability and accuracy of combinations of implicit and explicit methods for one-dimensional, scalar
convection–diffusion equations are evaluated in [3].

The time and space discretizations are discussed in Section 2. The time derivative is approximated either by a backward
differentiation formula (BDF) or an Adams method. The nonlinear convection term is extrapolated from old solutions or
advanced by an explicit Adams method. The analysis of the stability of the discretization in 2D is based on the Oseen equa-
tions with frozen velocity coefficients in the nonlinear term Nh in Section 3. Stability of the particular semi-explicit scheme
in [7] is studied in [20] using Fourier analysis. This analysis is generalized here to other classes of semi-explicit methods. If
stability problems are indicated using Fourier analysis with locally frozen coefficients, then such trouble is likely to occur
also in the nonlinear problem. The model for the stability analysis is validated by comparison of the predictions with the
results from calculations with the Navier–Stokes solver [7] in a straight channel. The methodology is easily applicable to
other space discretizations. The maximum lengths of the temporal and spatial steps for sufficient accuracy are estimated in
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