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a b s t r a c t 

In this paper, we investigate the stochastic optimal control problem for the zero-sum stochastic differ- 

ential game of mean-field type with partial information. We derive a necessary and sufficient maximum 

principle for that problem by virtue of the duality method and the mean-field backward stochastic differ- 

ential equations. As an application, we apply the result to the mean-field stochastic differential portfolio 

game problem, and obtain an equilibrium point of such game. 
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1. Introduction 

Recently, there has been an increasing interest in mean-field 

models due to the fact that modeling collective behaviors of indi- 

viduals on account of their mutual interactions in various physical 

or biological or sociological dynamical systems has been one of the 

major problems in the history of mankind. It is very convenient to 

construct the mean field theory to describe such interacting par- 

ticle systems. The concept of mean field is from statistical physics 

and the novelty of this theory is that particles interact through a 

medium, namely the mean field term, aggregated by action of and 

reaction on each particle. Several examples may be referred to [4] . 

Over the past few decades, game theory has been an active 

area of research in operations research and control theory. In ad- 

dition, game theory is a useful tool in many applications, particu- 

larly in biology and financial economic. Mataramvura and Øksendal 

[19] solved a stochastic differential game (SDG) with the restric- 

tion to consider only Markov controls. So the equilibrium point 

is derived using the Hamilton–Jacobi–sBellman (HJB) equations. 

Later, An and Øksendal [2] studied the SDGs with partial infor- 

mation. They established a maximum principle for such stochas- 

tic control problems. Chen and Yu [11] gave a maximum princi- 

ple for nonzero-sum stochastic differential game with delays. More 

recently, mean-field game theory has raised much popular inter- 
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est since the independent introduction by Huang–Caines–Malhamé

(where the framework was called the Nash Certainty Equivalence 

Principle) and Lasry–Lions, see Huang et al. [14] and Lasry and 

Lions [16] where the now standard terminology of Mean Field 

Games was introduced. In fact, the mean field equations for dy- 

namical games with large but finite populations of asymptotically 

negligible agents originated in the work of Huang et al. [15] . Over 

recent years it has been a rapid growth in the literature on mean- 

field games. The reader can refer to the book by Bensoussan et al. 

[5] for a review of main results and methods. Specifically, Tembine 

et al. [25] studied a class of risk-sensitive mean-field stochastic dif- 

ferential games. Nourian and Caines [21] considered large popula- 

tion dynamic games involving nonlinear stochastic dynamical sys- 

tems with agents. Gomes and Pimentel [13] proved the existence 

of classical solutions for time-dependent mean-field games with a 

logarithmic nonlinearity and subquadratic Hamiltonians. Djehiche 

and Huang [12] discussed a class of dynamic decision problems 

of mean-field type with time-inconsistent cost functionals and de- 

rive a stochastic maximum principle to characterize sub-game per- 

fect equilibrium points. Not long ago, Bensoussan et al. [4] pro- 

vided a comprehensive study of a general class of linear-quadratic 

mean-field games. Swiecicki et al. [24] studied a particular class of 

mean-field games that shows strong analogies with the nonlinear 

Schrödinger and Gross-Pitaevskii equations introduced in physics 

to describe a variety of physical phenomena. Ahuja [1] showed the 

existence and uniqueness of a mean field game solution using the 

stochastic maximum principle. 
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In our mean-field game model, since the control processes are 

adapted to a given subfiltration of the filtration generated by the 

underlying Lévy processes and the performance functional is a 

nonlinear function of the expected value (of mean-field type), this 

leads to a so-called time inconsistent control problem. Thus, we 

cannot use dynamic programming and HJB equations to solve the 

problem. In this paper, we derive sufficient conditions and neces- 

sary conditions for optimality of this control problem in the form 

of stochastic maximum principle. There is already a lot of literature 

on the maximum principle for the optimal control of mean-field 

systems. Interested readers may refer to Andersson and Djehiche 

[3] , Buckdahn et al. [8] , Li [17] , Meyer-Brandis et al. [20] , Shen 

and Siu [22] , Shen et al. [23] , Wang et al. [26] and Ma and Liu 

[18] for various versions of the stochastic maximum principles for 

the mean-field models. 

The rest of the paper is organized as follows. In Section 2 , we 

introduce some notations and the formulation of the mean-field 

zero-sum SDG with partial information. In Section 3 , we estab- 

lish a sufficient maximum principle for the mean-field game prob- 

lem. Section 4 is devoted to derive a necessary maximum princi- 

ple for the mean-field game problem. An application to the mean- 

field stochastic differential portfolio game problem is presented in 

Section 5 . Finally, Section 6 concludes the paper. 

2. Formulation of the game 

Let T := [0 , T ] denote a finite horizon, where T < ∞ . Let 

B (t) = (B 1 (t ) , . . . , B d (t )) T (where () T denotes transposed) and 

η(t) = (η1 (t ) , . . . , ηl (t )) T be d−dimensional standard Brownian 

motion and l independent pure jump Lévy martingales, re- 

spectively, on a filtered probability space (�, F , {F t } t≥0 , P ) . 

Let ˜ N (d t, d z) = ( ̃  N 1 (d t, d z 1 ) , . . . , ˜ N l (d t, d z l )) 
T , where ˜ N i (d t, d z i ) := 

N i (d t, d z i ) − νi (d z i ) d t is the compensated jump measure of ηi ( ·), 1 
≤ i ≤ l . Here, ν i ( dz i ) is the Lévy measure of ηi ( ·) and N i ( dt , dz i ) is 

the jump measure of ηi ( ·). We assume that the Brownian motion 

and the pure jump Lévy martingales are stochastically independent 

under P and F := {F t } t≥0 is the natural filtration generated by B 

and 

˜ N (augmented with the P -null sets of F). We can write 

ηi (t) = 

∫ t 

0 

∫ 
R 0 

z i ̃  N i (d s, d z i ) , i = 1 , . . . , l, 

where R 0 = R \{ 0 } . 
We assume that the dynamics of a stochastic system is modeled 

by the following mean-field jump-diffusion stochastic differential 

equation (SDE) of the form ⎧ ⎨ ⎩ 

dX 

u 1 ,u 2 (t) = μ(�u 1 ,u 2 
1 

(t)) dt + σ (�u 1 ,u 2 
2 

(t)) dB (t) 

+ 

∫ 
R 

l 
0 
γ (�u 1 ,u 2 

3 
(t, z)) ̃  N (d t, d z) , t ∈ T , 

X 

u 1 ,u 2 (0) = x, 

(2.1) 

where 

�u 1 ,u 2 
1 

(t) := (t , X 

u 1 ,u 2 (t ) , E [ φ(X 

u 1 ,u 2 (t ))] , u 1 (t ) , u 2 (t )) , 

�u 1 ,u 2 
2 

(t) := (t , X 

u 1 ,u 2 (t ) , E [ ϕ(X 

u 1 ,u 2 (t ))] , u 1 (t ) , u 2 (t )) , 

�u 1 ,u 2 
3 

(t, z) := (t , X 

u 1 ,u 2 (t ) , E [ ψ(X 

u 1 ,u 2 (t ))] , u 1 (t ) , u 2 (t ) , z) . 

Here E = E P denotes expectation with respect to P and 

μ : � × T × R 

n × R 

n × U 1 × U 2 → R 

n , σ : � × T × R 

n × R 

n ×
U 1 × U 2 → R 

n ×d , γ : � × T × R 

n × R 

n × U 1 × U 2 × R 

l → R 

n ×l 

are F -progressively measurable processes, and φ : R 

n → R 

n , 

ϕ : R 

n → R 

n , ψ : R 

n → R 

n , are given functions. The control do- 

mains U 1 and U 2 are two nonempty convex subsets of R 

k 1 and 

R 

k 2 , respectively. u 1 ( ·) and u 2 ( ·) are control processes of Player 

1 and Player 2, respectively. We require that the control pro- 

cesses u 1 ( ·) and u 2 ( ·) are càdlàg and adapted to a given filtration 

G := {E t } t≥0 . Here, E t is a sub-sigma algebra of F t at time t , i.e., 

E t ⊆ F t , t ≥ 0. The sub-sigma algebra is very general. For instance, 

we could have E t = F (t−δ) + , t ≥ 0, where (t − δ) + = max { 0 , t − δ} . 
This represents that the players only have delayed information 

available about the state of the system. This is so called partial 

information. We emphasize that our partial information must 

be distinguished from partial observation. The mean-field SDE 

(2.1) which is also called McKean–Vlasov-type equation is ob- 

tained as the mean square limit of an interacting particle system 

of the form (when n → ∞ ) 

dX 

i,n (t) 

= μ

( 

t , X 

i,n (t ) , 
1 

n 

n ∑ 

i =1 

φ(X 

i,n (t )) , u 1 (t ) , u 2 (t ) 

) 

dt 

+ σ

( 

t , X 

i,n (t ) , 
1 

n 

n ∑ 

i =1 

ϕ(X 

i,n (t )) , u 1 (t ) , u 2 (t ) 

) 

dB 

i (t) 

+ 

∫ 
R 

l 
0 

γ

( 

t , X 

i,n (t ) , 
1 

n 

n ∑ 

i =1 

ψ(X 

i,n (t )) , u 1 (t ) , u 2 (t ) , z 

) 

˜ N 

i (d t, d z) . 

Let 

ξ1 := (x, φ, u 1 , u 2 ) , ξ2 := (x, ϕ, u 1 , u 2 ) , ξ3 := (x, ψ, u 1 , u 2 ) , 

where φ = E [ φ(x )] , ϕ = E [ ϕ(x )] , ψ = E [ ψ(x )] , x, y, z ∈ R 

n , u 1 ∈ U 1 

and u 2 ∈ U 2 . We denote the norm in R 

n by | · |. We will also use 

the following notations ( p ≥ 1): 

L p (F T ; R 

n ) = { ξ : ξ is R 

n 

− valued F T − measurable random variable such that 

E [ | ξ | p ] < ∞} , 

L p 
F 
(T ; R 

n ) = 

{
Y (t) : { Y (t) , t ∈ T } is R 

n − valued F 

− adapted process such that 

E 

[∫ T 

0 

| Y (t ) | p dt 

]
< ∞ 

}
, 

L 2 ν (T ; R 

n ×l ) = { Y (t, z) : { Y (t, z) , (t, z) ∈ T × R 

l 
0 } is R 

n ×l 

− valued P � B(R 

l 
0 ) − adapted process 

such that E 

[∫ T 

0 

∫ 
R 

l 
0 

tr [ Y (t, z) T Y (t, z) diag (ν(dz))] dt 

]
< ∞ , 

where P denotes the σ − field of F − predictable sets on 

� × T } , 
S 2 (T ; R 

n ) = { Y (t) : { Y (t) , t ∈ T } is F -adapted càdlàg process 

such that 

E 

[
sup 

0 ≤t≤T 

| Y (t) | 2 
]

< ∞ 

}
. 

Suppose the following conditions are satisfied. 

(A1) μ, σ and γ are uniformly Lipschitz and have a linear growth 

in ξ 1 , ξ 2 and ξ 3 , respectively. φ, ϕ and ψ are uniformly Lip- 

schitz and have a linear growth; 

(A2) For any ξi ∈ R 

n × R 

n × U 1 × U 2 , stochastic processes 

μ(·, ξ1 ) ∈ L 2 
F 
(T ; R 

n ) , σ (·, ξ2 ) ∈ L 2 
F 
(T ; R 

n ×d ) and γ (·, ξ3 , ·) ∈ 

L 2 ν (T ; R 

n ×l ) . 

Definition 1. The control processes u 1 ( ·) and u 2 ( ·) are called to 

be admissible if u 1 (·) ∈ L 2 
G 
(T ; U 1 ) and u 2 (·) ∈ L 2 

G 
(T ; U 2 ) . The pro- 

cess u i (·) ∈ L 2 
G 
(T ; U i ) is called an admissible control of Player i 
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