
Symplectic method based on generating function for receding horizon
control of linear time-varying systems

Haijun Peng a,n, Shujun Tan b, Qiang Gao a, Zhigang Wub

a State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
b State Key Laboratory of Structural Analysis for Industrial Equipment, School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, China

a r t i c l e i n f o

Article history:
Received 15 November 2015
Received in revised form
21 May 2016
Accepted 17 August 2016

Keywords:
Receding horizon control
Generating functions
Linear time-varying systems
Hamiltonian systems
Symplectic method

a b s t r a c t

A novel method for solving the linear receding-horizon control (RHC) problem with time-varying
coefficients is proposed based on a generating function and the standard symplectic form of
Hamiltonian systems. In contrast to other methods used to solve the linear RHC problem, the
generating function is utilized to avoid directly online integrating the differential Riccati
equation (DRE). Solutions to the DRE at discrete time points have been obtained by applying the
generating function at each computation step. The derivation of the coefficient includes calcu-
lating the state transition matrices of the linear Hamiltonian system using the Magnus method,
which preserves the symplectic structure of the Hamiltonian system. Numerical simulations of
spacecraft rendezvous demonstrate that the proposed symplectic method obtains highly precise
results for relatively long discretization sizes, and then yields computational efficiency
improvements of one to two orders of magnitude compared with conventional backward sweep
methods and the Legendre pseudospectral methods.

& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The linear receding-horizon control (RHC) problem with
time-varying coefficients plays a fundamental role in control
engineering [1–6]. In recent years, there has been continued
research in practical engineering with regard to the problems
of real-time computation and the online implementation of
RHC [7–17].

RHC problems can be categorized as two groups according
whether constraints are considered or not. RHC with con-
straints has been successfully applied in the field of chemical
engineering [7], industrial automation [8,9], et al. A char-
acteristic feature of these engineering problems is that many
complex constraints including state constraints and control
constraints should be satisfied in the control process. As is
well known, RHC can deal effectively with these constrained
problems. Equally important, RHC without constraints has
successfully solved the control problems originated from
mechanical engineering [10–13] and aerospace engineering
[14–17] in recent years. For high-speed mechanical engi-
neering, a principal demand on any machining process is that
operating time should be as short as possible, and notably

chatter vibrations due to the regenerative effect limit the
achievable results. Because the high-speed chatter vibrations
are extremely small and hydraulic actuator can provide force/
moment as expected, RHC without constraints can prevent
chatter vibrations effectively [10,11]. For aerospace guidance
engineering, the optimal reference trajectory of spacecraft/
vehicle has been designed and calculated by off-line open-
loop optimal control, and the real trajectory of spacecraft/
vehicle is around the reference trajectory. Due to the envir-
onmental interference, navigation errors and model errors et
al., the real trajectory will have a small deviation from the
optimal reference trajectory and should be corrected. Because
the deviation is small and needs no large control force/
moment, RHC without constraints can correct deviation
effectively [14,15]. Therefore, RHC without constraints have
been widely used in high-speed mechanical engineering and
aerospace guidance engineering. However, when the con-
trolled linear system is a high-speed time-varying system, the
sample period should be extreme small, i.e., the sample fre-
quency is extreme high. Thus, the online computational effi-
ciency is a crucial factor for successful implementation of
unconstrained RHC.

Numerical methods with high efficiency for unconstrained
RHC problems have attracted much attention and vigorous
researches have been performing [15–24]. Owing to the expo-
nential convergence, pseudospectral approximation methods
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including Legendre pseudospectral methods [16,17] and Radau
pseudospectral methods [15] have been applied to RHC pro-
blems without constraints. In backward-sweep methods [18],
the stabilizing feedback gains are obtained by integrating a
differential Riccati equation (DRE) backward in time over a finite
interval. In Ref. [19], it is shown that the unconstrained
receding-horizon control problem can be converted to an
initial-value problem for an ordinary differential equation. A
simple model predictive control is obtained for solving the
optimality conditions by a fixed-point iteration scheme in
reference [20]. An approximate solution of linear time-varying
RHC is obtained by first and higher order difference methods in
reference [21]. By exploring the properties of the Riccati dif-
ference equation, a model predictive control for linear-time
invariant systems without constraints is developed in refer-
ence [22]. A new stabilizing RHC scheme is proposed for linear
discrete time-varying systems by linear matrix inequality [23].
The method proposed by Kowalska [24] employs variable step
sizes to solve RHC problem.

From the above references, one of the most important pro-
blems in implementing unconstrained RHC law is the online
computation burden associated with solving the DRE. Traditional
methods, such as the Runge-Kutta method [25,26], are reported in
Refs. [27–29]. These numerical methods should be implemented
online for RHC. The online computational burdenwhen solving the
DRE poses a substantial obstacle to real-world deployment.
Therefore, Lu [21] has given the approximate control law without
solving the DRE. However, for some complex linear parameter-
varying systems, we must employ high-order control laws with
small time intervals to obtain highly accurate results. Unfortu-
nately, higher order controllers of complex linear parameter-
varying systems cannot be conveniently obtained for practical
applications.

In contrast to the Taylor expansion employed in Ref. [21],
this paper proposes an algorithm with high-performance
based on the generating function method for linearly uncon-
strained RHC problems with time-varying coefficients. Indeed,
the generating function method has been utilized to obtain
the minimum H1 norm of linear-invariant systems [30] and
linear-invariant systems with terminal constraint conditions.
Inspired by reference [30], we have found a new method of
avoiding the online integration of the DRE and have revealed
that the results of the DRE can be obtained using the gen-
erating function. The resulting method is equivalent to the
backward sweep method but without incorporating the online
integration process. Therefore, the proposed method guaran-
tees the stability of closed-loop systems. In addition, in the
computational process of the present method, the solution to
the DRE has been obtained via the coefficient operation of the
generating function. This coefficient operation produces a
standard symplectic matrix pair; thus, the symplectic struc-
ture of the solution to the DRE is preserved. In deriving the
coefficient operation, state transition matrices (STMs) corre-
sponding to the linear Hamiltonian system with time-varying
coefficients are computed using the Magnus method, which
preserves the symplectic structure of the linearly controlled
Hamiltonian system [31–33]. Consequently, the standard
symplectic matrix pair and the Magnus method provide more
reliable solutions for the optimal trajectory and feedback
control laws [30,34].

The advantages of the proposed method are the online
computation burden has been substantially decreased, and a
large time interval can be used while obtaining highly accu-
rate results. Thus, the solution to the DRE has been obtained
using the generating function without online solving of the
DRE. Besides, because a highly accurate solution to the DRE

has been obtained using the proposed numerical algorithm, a
large time step can be utilized in practical applications.

2. Receding horizon control with time-varying coefficients

The linear RHC problem with time-varying coefficients and
some relevant results are reviewed in this section. The linear dif-
ferential equation of a controlled system with time-varying coef-
ficients is expressed as follows

_x¼A tð ÞxþB tð Þu; x 0ð Þ ¼ x0 ð1Þ

where xARn�1 is the state, uARm�1 is the control input,
A tð ÞARn�nand B tð ÞARn�m are the time-varying coefficient matri-
ces, and x0 is the initial condition. The system (1) in this paper is
assumed to be uniformly completely controllable.

The linear RHC problem with time-varying coefficients at any
fixed time tZ0 is defined as a linear optimal control in which the
cost

J ¼ 1
2

Z tþT

t
xT τð ÞQ τð Þx τð ÞþuT τð ÞR τð Þu τð Þ� �

dτ ð2Þ

is minimized for some chosen δrTo1 (δ is a positive value)
subject to the controlled system (1) with the terminal constraint
condition

x tþTð Þ ¼ 0 ð3Þ

where Q ðτÞARn�n and RðτÞARm�m are time-varying weighted
matrices. The weighted matrix Q ðτÞ is a positive semi-definite,
symmetric matrix, and RðτÞ is a positive definite symmetric
matrix.

By introducing a costate variable λ, the optimal control input is
obtained via the calculation of variations as follows:

u tð Þ ¼ �R�1 tð ÞBT tð Þλ tð Þ ð4Þ

Additionally, the optimal solution corresponding to Eq. (1) and
the cost defined by Eq. (2) is obtained as follows:

_x tð Þ
_λ tð Þ

( )
¼ A tð Þ �B tð ÞR�1 tð ÞBT tð Þ

�Q tð Þ �AT tð Þ

" #
x tð Þ
λ tð Þ

( )
ð5Þ

The solution of the linear Hamiltonian canonical Eq. (5) with
time-varying coefficients can be expressed using the STM. The
present states and costates at time t are expressed by the initial
states and costate, i.e.,

x tð Þ
λ tð Þ

( )
¼

Φxx t; t0ð Þ Φxλ t; t0ð Þ
Φλx t; t0ð Þ Φλλ t; t0ð Þ

" #
x t0ð Þ
λ t0ð Þ

( )
ð6Þ

The STM Φ t; t0ð Þ ¼
Φxx t; t0ð Þ Φxλ t; t0ð Þ
Φλx t; t0ð Þ Φλλ t; t0ð Þ

" #
is proven to be a

symplectic matrix, i.e., the STM satisfies the following definition of
a symplectic matrix:

ΦT t; t0ð ÞJΦ t; t0ð Þ ¼ J ð7Þ

where J is a unitary symplectic matrix, i.e., J¼
0 In

�In 0

" #

To define the relationship between the state x tð Þ and costate
λ tð Þ, we substitute Eq. (3) into the first row of Eq. (6) at time t0 ¼ t
and t ¼ tþT and then obtain

x tð Þ ¼ �Φ�1
xx tþT ; tð ÞΦxλ tþT ; tð Þλ tð Þ ¼ P t; tþTð Þλ tð Þ ð8Þ

If the length of the receding horizon interval T is not infinite,
the inverse of the Φxx tþT; tð Þ in Eq. (8) always exists [25].
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