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a b s t r a c t

We address a specific but recurring problem related to sampled linear systems. In particular, we provide
a numerical method for the rigorous verification of constraint satisfaction for linear continuous-time
systems between sampling instances. The proposed algorithm combines elements of classical branch and
bound schemes from global optimization with a recently published procedure to bound the exponential
of interval matrices.

& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

We consider continuous-time linear systems

_xðtÞ ¼ A xðtÞþB uðtÞ; xð0Þ ¼ x0 ð1Þ
with state and input constraints of the form

xðtÞAX and uðtÞAU for every tAR0 ð2Þ
under piecewise constant control

uðtÞ ¼ uðtkÞ for every tA ½kΔt; ðkþ1ÞΔtÞ; ð3Þ
where Δt40 denotes the sampling time and where tk≔kΔt for
every kAN. The sets X �Rn and U �Rm are assumed to be convex
and compact polytopes containing the origin as an interior point.
During controller design (and controller evaluation), system (1) is
usually replaced by the discrete-time system

xðtkþ1Þ ¼ bA xðtkÞþbB uðtkÞ; xð0Þ ¼ x0 ð4Þ

with bA≔expðAΔtÞ and bB≔ RΔt
0 expðA τÞ dτ B. While the discretized

system and the continuous-time system coincide at all sampling
instances, it is well-known that the continuous-time trajectory
may violate the state constraints even though the discrete-time
counterpart does not (see, e.g., the motivating example in [15]).
This problem can be prevented by considering adapted constraints
for the discretized system such that constraint satisfaction of (4)
w.r.t. the adapted constraints implies constraints satisfaction of (1)
w.r.t. the original constraints (2). Suitable methods for the

computation of adapted constraints can, for example, be found in
[1,2,9,13,15].

Comparing the methods in [1,2,9,13,15], it is peculiar that the
procedures in [1,2,13] all rely on a similar non-convex optimization
problem (OP). In fact, the central element of [1, Theorem 5], [2, Eq.
(15.16)], and [13, Eq. (15)] is an OP, which can be characterized as
follows. For a finite number of tuples ðx0;u0ÞAX � U that satisfy bA
x0þbBu0AX (i.e., the successor of the discretized system satisfies the
state constraints), we have to guarantee that the associated trajectory
of the continuous-time system does not violate the state constraints
for any tA ð0;ΔtÞ. Having this guarantee for a single trajectory is not
very meaningful. However, guaranteeing constraint satisfaction for,
say, sAN tuples ðxi;uiÞAX � U implies that the continuous-time
trajectory associated with any initial condition ðx0;u0ÞAconvf
ðx1;u1Þ;…; ðxs;usÞg does not violate the original constraints (see [13,
Proposition 2]) for details). The computation of adapted constraints
for the discretized system (4) can thus be reduced to the analysis of a
finite number of continuous-time trajectories (see [1,2,13]).

The problem of guaranteeing constraint satisfaction of the
continuous-time trajectory associated with a given tuple ðx0;u0ÞA
X � U can be described more precisely along the following lines.
First note that the polytope X can be written in the form

X ¼ fxARn j Hxr1g;

where HARp�n and where 1ARp is a vector with all entries equal
to 1. Now, let φðt; x0;u0Þ denote the solution of (1) at time tA ½0;Δt�
for an initial condition x0AX and a control action u0AU . Then, the
trajectory of the continuous-time system does obviously not
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violate the state constraints for any tA ½0;Δt� if
max

jA f1;…;pg
max

tA ½0;Δt�
eTj H φðt; x0;u0Þr1; ð5Þ

where ejARp is the j-th Euclidean unit vector. Taking into account
that φðt; x0;u0Þ reads

φðt; x0;u0Þ ¼ expðA tÞ x0þ
Z t

0
expðA τÞ dτ B u0 ð6Þ

for every tA ½0;Δt�, it is easy to see that eTj Hφðt; x0;u0Þ is, in general,
not concave (nor convex) in t. Hence, verifying whether (5) holds
(or not) is a multivariate non-convex OP. Fortunately, the l.h.s. in (5)
can be easily decomposed into p univariate OPs of the form

f n≔ max
tA ½0;Δt�

f ðtÞ; ð7Þ

where f : ½0;Δt�-R is given by

f ðtÞ≔hT expðA tÞ x0þ
Z t

0
expðA τÞ dτ B u0

� �
ð8Þ

with hARn. Clearly, (5) holds if f nr1 results from (7) for every
hAfHTe1;…;HTePg �Rn.

As indicated above, the solution of the non-convex OP (7) for
different ðx0;u0ÞAX � U and different hARn is essential for the
methods introduced in [1,2,13]. However, the authors of [1,2,13] do
not spend much effort on an efficient solution of (7). In fact, they
argue that, although the OP (7) is generally non-convex, it can be
solved reliable (using local optimization solvers) since it is the search
of the maximum of a scalar function on a scalar compact domain.
While this observation is true, we can provide more elaborated
solution strategies for (7) based on the special structure of the
objective function in (8). In this paper, we thus address the rigorous
(or global) solution of (7) using interval arithmetic (IA, see [7,11] for
an overview). More precisely, we intend to identify non-decreasing,
non-increasing, convex, and concave segments of f(t) on ½0;Δt� based
on interval inclusions for the first and second time-derivative of f(t).
Clearly, for such segments, local maxima can be easily computed and
subsequently finding the global maximum is straightforward. The
proposed solution scheme for (7) can be readily integrated into the
methods in [1,2,13] and thus improves these procedures for the
computation of adapted constraints.

The paper is organized as follows. We state basic notation and
preliminaries in Section 2. The main result of the paper, i.e., a
tailored branch and bound algorithm for the rigorous solution of
(7) is presented in Section 3. Finally, the proposed method is
illustrated with some examples in Section 4 before giving con-
clusions in Section 5.

2. Notation and preliminaries

As mentioned in the introduction, we exploit IA to provide
interval inclusions for f(t) and its derivatives

df ðtÞ
dt

≔ f 0ðtÞ and
d2f ðtÞ
dt2

≔ f ″ðtÞ:

IA can be understood as the extension of operations associated
with real numbers, like addition or multiplication, to intervals
(see, e.g., [11, Section 2.2]). In this paper, we only require a few
interval operations summarized in the following lemma.

Lemma 1 ([11, Eqs. (2.14) and (2.19)]). Let ½c� ¼ ½c; c� �R and ½d� ¼ ½
d;d� �R be intervals with crc and drd. Define the intervals

½c�þ½d�≔ cþd; cþd
h i

and

½c� � ½d�≔ minfc d; c d; c d; c dg;max c d; c d; c d; c d
n oh i

:

Then, cþdA ½c�þ½d� and c dA ½c� � ½d� for every cA ½c� and every
dA ½d�.

The rules in Lemma 1 can also be applied to compute the sum
(or the multiplication) of an interval ½c� and a real number dAR. In
this case, ½d� can be construed as a degenerated interval with
d ¼ d ¼ d. Moreover, by setting ½d� ¼ ½c�, the interval multiplication
can be used to evaluate ½c� raised to the power of κAN. However,
tighter inclusions result for the calculation rule given in [11, Eq.
(3.10)]. In fact, we find cκA ½c�κ for every cA ½c�, where

½c�κ≔
½cκ ; cκ � if c40 or κ is odd;
½cκ ; cκ � if co0 and κ is even;
½0; j ½c�j κ � if 0A ½c� and κ is even;

8><>:
and where the magnitude of ½c� is defined as j ½c�j≔maxfj c j ; j c j g.
In addition, we define the width of an interval as wð½c�Þ≔c�c . IA
can be easily extended to interval vectors and interval matrices.
For two interval matrices ½C� ¼ ½C ;C � and ½D� ¼ ½D;D� of appropriate
size, the sum ½C�þ½D� and the multiplication ½C� ½D� are understood
component-wise. Analogously, the magnitude j ½C�j is defined
component-wise, i.e., ðj ½C�j Þij≔j ½Cij;Cij�j .Finally, the infinity norm
of an interval matrix is defined as the maximum of the norms of
the contained real matrices, i.e., J ½C�J1≔maxCA ½C� JC J1. It is easy
to see, that this definition implies J ½C�J1 ¼ J j ½C�j J1. Computing
interval inclusions for (8) will mainly build on interval inclusions
for matrix exponentials, which can be calculated as follows.

Theorem 2 ([4, Theorem 4.3]). Let ½C� ¼ ½C ;C � be an interval matrix

with C ;CARq�q. Let k; lAN be such that 2lðkþ2Þ4 J ½C�J1. Define

½Cn�≔1
2l ½C�,

½Dn�≔Iqþ
½Cn�
1

Iqþ
½Cn�
2

… Iqþ
½Cn�
k

� �
…

� �� �
þ J ½Cn�Jkþ1

1

ðkþ1Þ! 1� J ½Cn�J1
kþ2

� � ½� Iq; Iq�;

and ½D�≔½Dn�2l
. Then expðCÞA ½D� for every CA ½C�.

Note that there exist many ways to evaluate ½Dn�2l as occurring
in Theorem 2. In [4, p. 61], the authors propose to use l successive
interval square operations, i.e.,

½Dn�2l ¼ … ½Dn�2� �2…� �2
:

An efficient procedure for the computation of the square of an
interval matrix is presented in [8, Section 6].

3. Rigorous solution via interval arithmetic

In the following, we present a tailored method for the rigorous
solution of the non-convex OP (7). Before describing the algorithm,
we have to stress that there exists a number of situations where (7)
can be solved analytically. In this context, note that (8) can be
rewritten as

f ðtÞ ¼ hT
Z t

0
expðA τÞ dτ ðA x0þB u0Þþx0

� �
ð9Þ

using the identity
R t
0 expðA τÞ dτ Aþ In ¼ expðA tÞ. Obviously, trivial

solutions result if A x0þB u0 ¼ 0, A¼0, or h¼0. In addition, an ana-
lytical solution of (7) is straightforward if h is an eigenvector of AT, i.e.,
if hTA¼ λ hT for some λAR. To see this, note that the time-derivatives
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