
Author's Accepted Manuscript

Estimation of Ultrasonic Signal Onset for Flow Measurement

Zehua Fang, Liang Hu, Longhui Qin, Kai Mao, Wenyu Chen, Xin Fu

PII: S0955-5986(17)30171-1

DOI: http://dx.doi.org/10.1016/j.flowmeasinst.2017.04.002

Reference: JFMI1327

To appear in: Flow Measurement and Instrumentation

Received date: 12 June 2016 Revised date: 27 February 2017 Accepted date: 13 April 2017

Cite this article as: Zehua Fang, Liang Hu, Longhui Qin, Kai Mao, Wenyu Chei and Xin Fu, Estimation of Ultrasonic Signal Onset for Flow Measurement, *Flow Measurement*and

Instrumentation http://dx.doi.org/10.1016/j.flowmeasinst.2017.04.002

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Estimation of Ultrasonic Signal Onset for Flow Measurement

Zehua Fang, Liang Hu*, Longhui Qin, Kai Mao, Wenyu Chen, Xin Fu
State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310058, China.

Abstract

Accurate determination of time-of-flight (TOF) is crucially important for precise ultrasonic flow measurement. Detection of ultrasonic signal onset (USO) is considered as an effective approach to determine the actual value of TOF. The USO can be estimated by signal fitting methods. However, the estimation accuracy and reliability of existing methods still need to be improved. This paper proposes a signal fitting method based on artificial fish swarm algorithm and particle swarm optimization combined algorithm (AFSA-PSO). In the method, AFSA is introduced to search all possible solution spaces firstly, considering the multi-modal characteristic of the objective function in signal fitting which is easily being amplified by the strong noise. Then, a feasible solution extraction strategy is proposed to extract the local optimal solution in every space. Finally, PSO is employed to further process the local solutions to obtain the accurate USO. The method is validated by both numerical and experiment tests, using simulated signals with different strength noise and measured signal in actual ultrasonic flowmeter respectively. Comparisons with the methods proposed by other researchers are also given in the paper. The proposed AFSA-PSO is found to be more accurate, more robust, having better anti-noise ability and less time-consuming under a given accuracy requirement.

Keywords-ultrasonic flowmeter, signal onset, time-of-flight, artificial fish swarm algorithm, feasible solution extraction, particle swarm optimization.

1. Introduction

For ultrasonic flow measurement based on time difference principle, accurate determination of time-of-flight (TOF) is crucially important. Traditional methods commonly detect the time positions of zero-crossing points on the received signal at the cycles having enough large amplitude to determine

^{*}Corresponding author. E-mail address: cmeehuli@zju.edu.cn.

Download English Version:

https://daneshyari.com/en/article/5001798

Download Persian Version:

 $\underline{https://daneshyari.com/article/5001798}$

Daneshyari.com