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A B S T R A C T

Most methods for flow rate measurement in open channels usually have low accuracy over a range of flow rates
due to varying fluid properties, flow conditions and channel length. This paper suggests an algorithm to improve
on the accuracy of flow rates computed based on hydraulic structure and slope-hydraulic radius methods. A
model for determining flow rates in accelerating flows is also developed. In the proposed algorithm, the para-
meter used for adapting the flow rate models is obtained by comparing the measured fluid depth with the depth
simulated based on the one-dimensional Saint Venant equations. The results show that an improvement
from±2.3% to± 0.8% accuracy in the flow rate measurement using the Venturi flume method could be
achieved. In unsteady state flow in a straight-run channel, the results based on flow simulation also show
possibility of achieving accurate computation over a wide range of flow rates.

1. Introduction

Fluid flow in an open channel has many industrial applications. It is
applied in transportation of slurries, water supply for irrigation, and
river flow control [1]. In these fields, accurate flow measurements are
important for proper flow distribution and control for safe operations.
In open channels, the flow rate is usually difficult to measure directly.
Most methods employed are based on computation of flow rate from
measurements of other variables that can be measured directly. Such
variables include channel width, channel depth, channel slope and
channel velocity. Among other methods, the timed gravimetric, the
area-velocity, the slope-hydraulic radius and the hydraulic structure
methods are used for flow rate measurements in open channels [2].

The timed gravimetric method is limited to flow rates less than100
litres/min and is not suitable for continuous flow. The area-velocity
method requires measurement of average velocity of the flow over a
known cross-section. The area-velocity method uses pressure trans-
ducer and Doppler ultrasonic sensor for depth and velocity measure-
ments, respectively. These instruments are sensitive to flow dis-
turbances, thus resulting in error± 10% in the measurement [3]. In the
slope-hydraulic radius method, a flow resistance model such as the
Manning formula is utilized. The method is applied in uniform flows,
and is best suited for sizing open channels due to its simplicity. For
control purpose, the slope-hydraulic radius method is not suitable due
to its wide measurement error in the range of 25–30%. The

measurement error is due to uncertainty in determining the correct
frictional parameter, such as Manning's roughness coefficient that
characterises the flow. Another common method is the use of hydraulic
structures such as weirs and flumes. Both structures introduce a re-
striction in the flow direction, which leads to changes in the approach
velocity and in the liquid depth in the channel. The measurement of
flow rate with a flume or weir is based on the unique depth-flow rate
relationship established in the flow by the structure. Although flumes
and weirs show high accuracy (2–6%) under laboratory observations,
the field accuracy still lies within±10% [4]. This is due to un-
certainties in measurement of the level, and due to difficulties in ob-
taining the correct discharge coefficient for correction of losses in the
theoretical depth-flow rate relationship.

This paper focuses on the use of hydraulic structures and slope-
hydraulic radius measurement techniques, where the liquid depth is the
only physical measurement required to compute the flow rate in a given
channel geometry. These techniques are easier to manipulate in de-
signing a software for flow control in open channels. Normally, the
hydraulic structures (flumes or weirs) are installed in applications
where the flow upstream is subcritical (that is, the flow condition where
the flow velocity is less than the gravity wave celerity). When the ve-
locity is greater than the wave speed (celerity), the flow condition is
supercritical flow. At the transition between subcritical and super-
critical conditions, the flow is critical, that is, the flow velocity and the
wave speed are the same. In general, flumes are designed depending on
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whether the approaching fluid flow is subcritical or supercritical.
Wilson [5] described the design of straight-run channels for measure-
ment of flow rates in supercritical condition. Similar to subcritical
Venturi flumes, Kilpatrick et al. [6] and Smith et al. [7] gave clear
discussions on development of supercritical flumes. The problems with
the use of supercritical Venturi flume are the difficulty to obtain critical
flow conditions for all flow rates, and the possibility of deposition of
fluid debris or suspensions. These challenges limit the measurement
range as well as the hydraulic control of the flume. The slope-hydraulic
radius method can be applied in supercritical flow conditions, but this
will require in addition to uniform flow model, a model for accelerating
flows, since the flow may not have reached a uniform flow before
discharging the channel.

There are several studies and model reviews on flow rate mea-
surement in open channels [8–10]. The possibility of estimating drilling
mud flow rate for kick/loss detection using a Venturi channel flow rate
model is discussed in Berg et al. [11], where it is shown that the re-
quired tuning parameter for the model depends on the fluid properties
due to non-Newtonian behaviour of the fluid. In this paper, an algo-
rithm is presented for computing flow rate in open channels with im-
proved accuracy. The developed method could be suitable for software
implementation in open channels in both subcritical and supercritical
upstream flow conditions. The desired improved accuracy is obtained
by continuous calibration of the model applied in each of the slope-
hydraulic radius and hydraulic structure techniques. In order to achieve
this, the flow through the channel is simulated using the estimated flow
rate, and the simulated fluid depth is compared with the measured fluid
depth. The difference in the simulated and measured depths is used to
continuously adjust a tuning parameter in the flow rate model until the
difference between the simulated and the measured depths is within a
tolerance level.

The success of this algorithm depends on a suitable 1-D unsteady
state model that can be applied to simulate the flow in an open channel.
The Saint Venant equations have been long established as a good 1-D
model that predicts the flow behaviour in an open channel. The accu-
racy and speed of execution of these hyperbolic partial differential
equations depend on the numerical scheme employed. A number of
numerical algorithms for solving the Saint Venant equations have been
developed [12–14]. The simplified numerical scheme described in Agu
et al. [15] for solving the nonlinear equations, is applied in this paper.

In the following sections, the governing equations are presented,
and the iterative algorithm for computation of the flow rate using both
the hydraulic structure and the slope-hydraulic radius methods, are
described. Simulation results based on the algorithms are presented,
and their accuracy and speed of execution are discussed. Finally, some
conclusions are drawn.

2. Governing equation

The unsteady state flow of fluid in an open channel of any kind of
cross section can be described by the one-dimensional Saint Venant
equations [16]
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Here, Q is the volumetric flow rate, and A and h are the flow cross
sectional area and free surface liquid depth, respectively. θ is the
channel angle of inclination, and g is the acceleration due to gravity. β
is the momentum correction coefficient with a value between 1.03 and
1.07. x is the position along the channel axis and t is the time. For a
Newtonian fluid, the frictional slope Sf is given by Manning's equation
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where nM is the Manning's roughness coefficient, =V Q A/ is the
average flow velocity and =Rh

A
Pw

is the hydraulic radius, where Pw is
the wetted perimeter at the flow cross section. In non-Newtonian fluid
flows, the internal frictional shearing stresses dominate. Based on the
velocity profile for a power law fluid rheology [17], Sf is obtained as
given in Eq. (4). For yield-pseudo-plastic fluid rheology, Sf is given by
Eq. (5) according to Jin and Fread [18].

= ⎛
⎝

+ ⎞
⎠

S K
ρgR

V
h

n
n4

1 2 ,f
h

n

(4)

=
⎡

⎣

⎢
⎢
⎢

+
⎛

⎝
⎜⎜

+ +

+

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥
⎥

+

( )
S

τ
ρgR

V

R
1 (ϵ 1)(ϵ 2)

(0.74 0.656ϵ)
.f

y

h
τ
K h

ϵ

1
ϵ 0.15

y

(5)

Here, ρ, τy, K and n (or ≡ϵ n
1 ) are fluid properties denoting the

density, yield shear stress, flow consistency coefficient and fluid be-
haviour index, respectively.

The numerical solution of Eqs. (1) and (2) can be obtained as in Agu
et al. [15], with notation for the spatial discretization as given in Fig. 1,
where the computation nodes for the liquid depth are at the cell centres
( =i N1,2,3, .., ) and those for the flow rate are at the cell faces
( = +i N, , ,..,3
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2 ) based on a staggered grid arrangement. Eqs. (6) and

(7) describe the discretized forms of Eqs. (1) and (2).
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Applying the first order upwind scheme,
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where +Ai 1/2 is the average cross sectional area for each cell face, and is
calculated based on the average cell centre liquid depth, ++h h

2
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2.1. Boundary conditions and inputs

At the upstream boundary, the values of =h t x( , 0) and =Q t x( , 0)
are designated as input corresponding to h0 and Q1/2, respectively, as
shown in Fig. 1. The downstream boundaries are =h t x L( , ) and

=Q t x L( , ) corresponding to hN and +QN 1/2, respectively. Normally,

Fig. 1. Computation nodes for liquid depth and flow rate along
the channel length.
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