
IFAC-PapersOnLine 49-30 (2016) 071–074

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.11.128

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Developing and Testing Software for the 14-BISat Nanosatellite

Rogerio Atem de Carvalho, Milena S. de Azevedo, Sara C. M. de Souza, Galba V. S. Arueira, Cedric S. Cordeiro

Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA), Instituto Federal Fluminense (IFF), Campos/RJ,

Brazil (Tel: 55-22-2737-5691; e-mail: ratem@iff.edu.br).

Abstract: The aim of this paper is to present the development of the software for controlling one of the
scientific payloads of the 14-BISat nanosatellite, the Flux-Φ-Probe Experiment (Fipex). This satellite was

developed by the Instituto Federal Fluminense (IFF) as part of the multinational QB50 mission for the
Low Termosphere characterization. In order to provide the necessary support for developing this

software, a software toolset was developed in order to to form an agile, integrated development
environment for the C/C++ languages for microcontrollers.

Keywords: Embedded systems, Artificial satellites, Automatic testing, Code generation, Finite state
machines.

1. INTRODUCTION

Botef (2015) lists Agile Methods as one of the key

components for aerospace manufacturing competitiveness. In
this direction, Grenning (2011, p. 2) affirms that Test Driven

Development (TDD), specifically, is an effective way of
weaving test into the fabric of embedded software

development. However, a recent case study by Berger and
Eklund (2015) showed that one of the main constraints for

achieving a faster time-to-market product development is an
inflexible test environment that inhibits fast feedback to the

changed or added features.

Additionally, Youn at al. (2015) bring attention to the fact that

the ever growing pace of software use in airborne systems in
parallel with the modern software development and

verification technologies and methods makes certification
standards for safety-critical systems, such as DO-178,

become inadequate in certain points. In that direction, the
specific use of TDD for IEC-61508 standard for safety-

critical software is analyzed by Ozçelik and Altilar (2015),
who conclude that the technique supports most of the

standard and do not conflict with the rest of it.

This finding suggests that there is room for further

development of Agile practices and tools for embedded
systems, in special those based on TDD. In this direction, this

paper aims at briefly presenting the experience of using a
Tools & Techniques Set (TTS) for developing complex

embedded systems called VALVES (VALidation and
Verification for Embedded Systems), named after the device

that controls the flux of fluids in pipes, as an analogy to the
process of controlling the flux of source code into production.

Valves is an evolution of the basic TTS presented by
Carvalho et al. (2014, 2015, and 2016), and is composed by

an integrated set of elements that forms a cohesive toolset for
the C/C++ languages for microcontrollers and other

embedded systems platforms: (i) a tool for modeling Finite
State Machines, (ii) a Domain Specific Language (DSL) for

automated test generation, build, and deployment (iii) a
mechanism for supervised FSM execution, (iv) a toolchain

for compiling and debugging, (v) a version control system,
and (vi) Continuous Integration process and tool. The

elements (ii), (iii), and (vi) were developed by the authors,
while the others were integrated to the previous to form the

TTS.

The toolset was used to develop the controlling software for

one of the 14-BISat cubesat’s payloads, the Fipex (Flux-Φ-
Probe Experiment), from Dresden Technological University

(Germany). The development of the payload occurred in
parallel with the development of the satellite's control

software, using a Interface Control Document (ICD) as an
artifact for synchronization.

Fig. 1. Overview of the FSM representing the Fipex
Controller behavior (left), and Fipex behavior (right).

The following topics briefly present the Valves’ Validation
and Verification chain used to develop Fipex Controller, the

payload’s controller software, together with remarks on this
specific development case.

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 71

Developing and Testing Software for the 14-BISat Nanosatellite

Rogerio Atem de Carvalho, Milena S. de Azevedo, Sara C. M. de Souza, Galba V. S. Arueira, Cedric S. Cordeiro

Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA), Instituto Federal Fluminense (IFF), Campos/RJ,

Brazil (Tel: 55-22-2737-5691; e-mail: ratem@iff.edu.br).

Abstract: The aim of this paper is to present the development of the software for controlling one of the
scientific payloads of the 14-BISat nanosatellite, the Flux-Φ-Probe Experiment (Fipex). This satellite was

developed by the Instituto Federal Fluminense (IFF) as part of the multinational QB50 mission for the
Low Termosphere characterization. In order to provide the necessary support for developing this

software, a software toolset was developed in order to to form an agile, integrated development
environment for the C/C++ languages for microcontrollers.

Keywords: Embedded systems, Artificial satellites, Automatic testing, Code generation, Finite state
machines.

1. INTRODUCTION

Botef (2015) lists Agile Methods as one of the key

components for aerospace manufacturing competitiveness. In
this direction, Grenning (2011, p. 2) affirms that Test Driven

Development (TDD), specifically, is an effective way of
weaving test into the fabric of embedded software

development. However, a recent case study by Berger and
Eklund (2015) showed that one of the main constraints for

achieving a faster time-to-market product development is an
inflexible test environment that inhibits fast feedback to the

changed or added features.

Additionally, Youn at al. (2015) bring attention to the fact that

the ever growing pace of software use in airborne systems in
parallel with the modern software development and

verification technologies and methods makes certification
standards for safety-critical systems, such as DO-178,

become inadequate in certain points. In that direction, the

specific use of TDD for IEC-61508 standard for safety-

critical software is analyzed by Ozçelik and Altilar (2015),
who conclude that the technique supports most of the

standard and do not conflict with the rest of it.

This finding suggests that there is room for further

development of Agile practices and tools for embedded
systems, in special those based on TDD. In this direction, this

paper aims at briefly presenting the experience of using a
Tools & Techniques Set (TTS) for developing complex

embedded systems called VALVES (VALidation and
Verification for Embedded Systems), named after the device

that controls the flux of fluids in pipes, as an analogy to the
process of controlling the flux of source code into production.

Valves is an evolution of the basic TTS presented by
Carvalho et al. (2014, 2015, and 2016), and is composed by

an integrated set of elements that forms a cohesive toolset for
the C/C++ languages for microcontrollers and other

embedded systems platforms: (i) a tool for modeling Finite
State Machines, (ii) a Domain Specific Language (DSL) for

automated test generation, build, and deployment (iii) a
mechanism for supervised FSM execution, (iv) a toolchain

for compiling and debugging, (v) a version control system,
and (vi) Continuous Integration process and tool. The

elements (ii), (iii), and (vi) were developed by the authors,
while the others were integrated to the previous to form the

TTS.

The toolset was used to develop the controlling software for

one of the 14-BISat cubesat’s payloads, the Fipex (Flux-Φ-
Probe Experiment), from Dresden Technological University

(Germany). The development of the payload occurred in
parallel with the development of the satellite's control

software, using a Interface Control Document (ICD) as an
artifact for synchronization.

Fig. 1. Overview of the FSM representing the Fipex
Controller behavior (left), and Fipex behavior (right).

The following topics briefly present the Valves’ Validation
and Verification chain used to develop Fipex Controller, the

payload’s controller software, together with remarks on this
specific development case.

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 71

Developing and Testing Software for the 14-BISat Nanosatellite

Rogerio Atem de Carvalho, Milena S. de Azevedo, Sara C. M. de Souza, Galba V. S. Arueira, Cedric S. Cordeiro

Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA), Instituto Federal Fluminense (IFF), Campos/RJ,

Brazil (Tel: 55-22-2737-5691; e-mail: ratem@iff.edu.br).

Abstract: The aim of this paper is to present the development of the software for controlling one of the
scientific payloads of the 14-BISat nanosatellite, the Flux-Φ-Probe Experiment (Fipex). This satellite was

developed by the Instituto Federal Fluminense (IFF) as part of the multinational QB50 mission for the
Low Termosphere characterization. In order to provide the necessary support for developing this

software, a software toolset was developed in order to to form an agile, integrated development
environment for the C/C++ languages for microcontrollers.

Keywords: Embedded systems, Artificial satellites, Automatic testing, Code generation, Finite state
machines.

1. INTRODUCTION

Botef (2015) lists Agile Methods as one of the key

components for aerospace manufacturing competitiveness. In
this direction, Grenning (2011, p. 2) affirms that Test Driven

Development (TDD), specifically, is an effective way of
weaving test into the fabric of embedded software

development. However, a recent case study by Berger and
Eklund (2015) showed that one of the main constraints for

achieving a faster time-to-market product development is an
inflexible test environment that inhibits fast feedback to the

changed or added features.

Additionally, Youn at al. (2015) bring attention to the fact that

the ever growing pace of software use in airborne systems in
parallel with the modern software development and

verification technologies and methods makes certification
standards for safety-critical systems, such as DO-178,

become inadequate in certain points. In that direction, the
specific use of TDD for IEC-61508 standard for safety-

critical software is analyzed by Ozçelik and Altilar (2015),
who conclude that the technique supports most of the

standard and do not conflict with the rest of it.

This finding suggests that there is room for further

development of Agile practices and tools for embedded
systems, in special those based on TDD. In this direction, this

paper aims at briefly presenting the experience of using a
Tools & Techniques Set (TTS) for developing complex

embedded systems called VALVES (VALidation and
Verification for Embedded Systems), named after the device

that controls the flux of fluids in pipes, as an analogy to the
process of controlling the flux of source code into production.

Valves is an evolution of the basic TTS presented by
Carvalho et al. (2014, 2015, and 2016), and is composed by

an integrated set of elements that forms a cohesive toolset for
the C/C++ languages for microcontrollers and other

embedded systems platforms: (i) a tool for modeling Finite
State Machines, (ii) a Domain Specific Language (DSL) for

automated test generation, build, and deployment (iii) a
mechanism for supervised FSM execution, (iv) a toolchain

for compiling and debugging, (v) a version control system,
and (vi) Continuous Integration process and tool. The

elements (ii), (iii), and (vi) were developed by the authors,
while the others were integrated to the previous to form the

TTS.

The toolset was used to develop the controlling software for

one of the 14-BISat cubesat’s payloads, the Fipex (Flux-Φ-
Probe Experiment), from Dresden Technological University

(Germany). The development of the payload occurred in
parallel with the development of the satellite's control

software, using a Interface Control Document (ICD) as an
artifact for synchronization.

Fig. 1. Overview of the FSM representing the Fipex
Controller behavior (left), and Fipex behavior (right).

The following topics briefly present the Valves’ Validation
and Verification chain used to develop Fipex Controller, the

payload’s controller software, together with remarks on this
specific development case.

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 71

Developing and Testing Software for the 14-BISat Nanosatellite

Rogerio Atem de Carvalho, Milena S. de Azevedo, Sara C. M. de Souza, Galba V. S. Arueira, Cedric S. Cordeiro

Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA), Instituto Federal Fluminense (IFF), Campos/RJ,

Brazil (Tel: 55-22-2737-5691; e-mail: ratem@iff.edu.br).

Abstract: The aim of this paper is to present the development of the software for controlling one of the
scientific payloads of the 14-BISat nanosatellite, the Flux-Φ-Probe Experiment (Fipex). This satellite was

developed by the Instituto Federal Fluminense (IFF) as part of the multinational QB50 mission for the
Low Termosphere characterization. In order to provide the necessary support for developing this

software, a software toolset was developed in order to to form an agile, integrated development
environment for the C/C++ languages for microcontrollers.

Keywords: Embedded systems, Artificial satellites, Automatic testing, Code generation, Finite state
machines.

1. INTRODUCTION

Botef (2015) lists Agile Methods as one of the key

components for aerospace manufacturing competitiveness. In
this direction, Grenning (2011, p. 2) affirms that Test Driven

Development (TDD), specifically, is an effective way of
weaving test into the fabric of embedded software

development. However, a recent case study by Berger and
Eklund (2015) showed that one of the main constraints for

achieving a faster time-to-market product development is an
inflexible test environment that inhibits fast feedback to the

changed or added features.

Additionally, Youn at al. (2015) bring attention to the fact that

the ever growing pace of software use in airborne systems in
parallel with the modern software development and

verification technologies and methods makes certification
standards for safety-critical systems, such as DO-178,

become inadequate in certain points. In that direction, the
specific use of TDD for IEC-61508 standard for safety-

critical software is analyzed by Ozçelik and Altilar (2015),
who conclude that the technique supports most of the

standard and do not conflict with the rest of it.

This finding suggests that there is room for further

development of Agile practices and tools for embedded
systems, in special those based on TDD. In this direction, this

paper aims at briefly presenting the experience of using a
Tools & Techniques Set (TTS) for developing complex

embedded systems called VALVES (VALidation and
Verification for Embedded Systems), named after the device

that controls the flux of fluids in pipes, as an analogy to the
process of controlling the flux of source code into production.

Valves is an evolution of the basic TTS presented by
Carvalho et al. (2014, 2015, and 2016), and is composed by

an integrated set of elements that forms a cohesive toolset for
the C/C++ languages for microcontrollers and other

embedded systems platforms: (i) a tool for modeling Finite
State Machines, (ii) a Domain Specific Language (DSL) for

automated test generation, build, and deployment (iii) a
mechanism for supervised FSM execution, (iv) a toolchain

for compiling and debugging, (v) a version control system,
and (vi) Continuous Integration process and tool. The

elements (ii), (iii), and (vi) were developed by the authors,
while the others were integrated to the previous to form the

TTS.

The toolset was used to develop the controlling software for

one of the 14-BISat cubesat’s payloads, the Fipex (Flux-Φ-
Probe Experiment), from Dresden Technological University

(Germany). The development of the payload occurred in
parallel with the development of the satellite's control

software, using a Interface Control Document (ICD) as an
artifact for synchronization.

Fig. 1. Overview of the FSM representing the Fipex
Controller behavior (left), and Fipex behavior (right).

The following topics briefly present the Valves’ Validation
and Verification chain used to develop Fipex Controller, the

payload’s controller software, together with remarks on this
specific development case.

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 71

Developing and Testing Software for the 14-BISat Nanosatellite

Rogerio Atem de Carvalho, Milena S. de Azevedo, Sara C. M. de Souza, Galba V. S. Arueira, Cedric S. Cordeiro

Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA), Instituto Federal Fluminense (IFF), Campos/RJ,

Brazil (Tel: 55-22-2737-5691; e-mail: ratem@iff.edu.br).

Abstract: The aim of this paper is to present the development of the software for controlling one of the
scientific payloads of the 14-BISat nanosatellite, the Flux-Φ-Probe Experiment (Fipex). This satellite was

developed by the Instituto Federal Fluminense (IFF) as part of the multinational QB50 mission for the
Low Termosphere characterization. In order to provide the necessary support for developing this

software, a software toolset was developed in order to to form an agile, integrated development
environment for the C/C++ languages for microcontrollers.

Keywords: Embedded systems, Artificial satellites, Automatic testing, Code generation, Finite state
machines.

1. INTRODUCTION

Botef (2015) lists Agile Methods as one of the key

components for aerospace manufacturing competitiveness. In
this direction, Grenning (2011, p. 2) affirms that Test Driven

Development (TDD), specifically, is an effective way of
weaving test into the fabric of embedded software

development. However, a recent case study by Berger and
Eklund (2015) showed that one of the main constraints for

achieving a faster time-to-market product development is an
inflexible test environment that inhibits fast feedback to the

changed or added features.

Additionally, Youn at al. (2015) bring attention to the fact that

the ever growing pace of software use in airborne systems in
parallel with the modern software development and

verification technologies and methods makes certification
standards for safety-critical systems, such as DO-178,

become inadequate in certain points. In that direction, the
specific use of TDD for IEC-61508 standard for safety-

critical software is analyzed by Ozçelik and Altilar (2015),
who conclude that the technique supports most of the

standard and do not conflict with the rest of it.

This finding suggests that there is room for further

development of Agile practices and tools for embedded
systems, in special those based on TDD. In this direction, this

paper aims at briefly presenting the experience of using a
Tools & Techniques Set (TTS) for developing complex

embedded systems called VALVES (VALidation and
Verification for Embedded Systems), named after the device

that controls the flux of fluids in pipes, as an analogy to the
process of controlling the flux of source code into production.

Valves is an evolution of the basic TTS presented by
Carvalho et al. (2014, 2015, and 2016), and is composed by

an integrated set of elements that forms a cohesive toolset for
the C/C++ languages for microcontrollers and other

embedded systems platforms: (i) a tool for modeling Finite
State Machines, (ii) a Domain Specific Language (DSL) for

automated test generation, build, and deployment (iii) a
mechanism for supervised FSM execution, (iv) a toolchain

for compiling and debugging, (v) a version control system,
and (vi) Continuous Integration process and tool. The

elements (ii), (iii), and (vi) were developed by the authors,
while the others were integrated to the previous to form the

TTS.

The toolset was used to develop the controlling software for

one of the 14-BISat cubesat’s payloads, the Fipex (Flux-Φ-
Probe Experiment), from Dresden Technological University

(Germany). The development of the payload occurred in
parallel with the development of the satellite's control

software, using a Interface Control Document (ICD) as an
artifact for synchronization.

Fig. 1. Overview of the FSM representing the Fipex
Controller behavior (left), and Fipex behavior (right).

The following topics briefly present the Valves’ Validation
and Verification chain used to develop Fipex Controller, the

payload’s controller software, together with remarks on this
specific development case.

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 71

72 Rogerio Atem de Carvalho et al. / IFAC-PapersOnLine 49-30 (2016) 071–074

2. VALIDATION CHAIN

The Validation Chain represents the part of the TTS
responsible for checking if the system is in accordance with

the requirements, therefore, it is a type of checking that
occurs at higher abstraction levels. Finite State Machines

(FSM) are used by the TTS to provide a means of modeling
and simulating embedded systems behavior. In order to

design the FSM, a graphical modeling tool is used as a basis
for providing the validation process for Valves. In that

direction, Yakindu Statechart Tools was the environment of
choice, given that it is an integrated modeling environment

for the specification and development of reactive, event-
driven systems using the concept of FSM.

Although Yakindu is able of simulating the execution of FSM
in its modeling environment, which is usually based in a PC

machine, a plugin for the Eclipse Integrated Development
Environment (IDE) was developed for executing the

automated tests in a supervised way, in order to provide
Validation in the target hardware, in this case a

microcontroller. In other words, the FSM is modeled by the
user using a PC, however its source code is generated to run

in the target platform, where it is properly ran and tested.
Therefore, Valves substitutes the usual simulation in a PC

computer by the real, controlled execution in the target
hardware.

Running the FSM in a controlled way means to fire its events
“by hand”, when the user clicks with the mouse pointer on

the transitions of its visual representation. Of course, in the
case of time-constrained transitions, the user has no direct

control over the specific behavior of the machine, and they
are fired automatically, as expected. In other words, it was

implemented a Validation environment using FSM as an
ubiquitous language, or a common language used by all

stakeholders.

One of the main requirements for this functionality was that it

should generate the smallest overhead possible, in order to
run on microcontrollers. Thus, it was necessary to keep most

of the testing machinery outside the target hardware. With
regard to achieving this goal, while maintaining the TDD

premise of “tests are also documentation”, a Domain Specific
Language (DSL), named Handwheel, was created in order to

automat and document the codification of tests, which are ran
in the hardware where Yakindu's rans. Handwheel provides a

very high level of abstraction for writing tests, thus making
this task easier to accomplish, even for non-experienced

coders. Tests are automatically translated into C code with
very small footprint. Thereby, it is possible to treat the target

hardware as a black box, consuming a minimum of memory
and processing budget, while allowing sophisticated, high-

level testing, by means of an abstraction level usually found
only in Information Systems.

An interesting byproduct of this solution is that auto-testing
scripts can be created and used in the production environment

for checking the system's health and send warnings and

reports to the controlling element. This is possible because

Valves establishes a protocol for sending instructions to the
target system, and, accordingly, this same protocol is used for

testing.

Fig. 1 presents two FSM modeled using Yakindu: the first

represents the behavior of the Fipex Controller software,
developed by the authors, while the second one represents

the behavior of the Fipex device, and was used to simulate it..
Fig. 2 shows the code written in Handwheel for testing the

first FSM, as well as its successful execution during a testing
cycle.

Fig. 2. Handwheel code used for testing and executing
(simulating) the Fipex Controller FSM.

3. VERIFICATION CHAIN

It is at the Verification level that the hardware platform of

choice will determine the use of specific tools. For instance,
ARM platforms with Linux-based RTOS (Real Time

Operational System) distributions allow a “comfortable” use
of C++ with more complex supportive libraries, such the ones

for I/O, while pure C with simple test facilities are more
suitable to microcontrollers such as MSP430 – the processor

of 14-BISat’s Onboard Computer (OBC). Valve’s verification

chain is formed by a series of open source tools for compiling

and debugging C/C++ code.

It is important to note that Handwheel is not only the

language for simplifying tests, but also the connection
element between the Validation and Verification tasks, given

that it is also used to build and deploy the generated code. For
doing so, it is supported by specific makefiles developed by

the authors in order to simplify compilation, building and
deployment of the code onto the target hardware. For the

Fipex Controller, gcc was used to compile and link code in
pure C, and mspdebug was used to upload the executable

code into MSP430’s flash memory.

Given that 14-BISat is a multi-year project, the development

of the software for its payload involved different people
contributing to it. Hence, it was necessary to provide ways

for (a) control the evolution of the software and (b) keeping
each new version of it consistent. Valves integrates into its

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

72

Download English Version:

https://daneshyari.com/en/article/5001941

Download Persian Version:

https://daneshyari.com/article/5001941

Daneshyari.com

https://daneshyari.com/en/article/5001941
https://daneshyari.com/article/5001941
https://daneshyari.com

