
IFAC-PapersOnLine 49-30 (2016) 114–119

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.11.138

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Strategies for Big Data Analytics through
Lambda Architectures in Volatile

Environments

Veith, Alexandre da Silva ∗ Anjos, Julio C. S. dos ∗

de Freitas, Edison Pignaton ∗ Lampoltshammer, Thomas J. ∗∗

Geyer, Claudio F. ∗

∗ Federal University of Rio Grande do Sul (UFRGS), Porto Alegre -RS
- P.O.Box 15064 - Brazil (e-mail: alexandre.veith@ufrgs.br and

{jcsanjos, edison.pignaton, geyer}@inf.ufrgs.br)
∗∗ Danube University Krems, Department for E-Governance and
Administration, Dr.-Karl-Dorrek-Str. 30, 3500 Krems, Austria

(e-mail: thomas.lampoltshammer@donau-uni.ac.at)

Abstract:
Expectations regarding the future growth of Internet of Things (IoT)-related technologies are
high. These expectations require the realization of a sustainable general purpose application
framework that is capable to handle these kind of environments with their complexity in
terms of heterogeneity and volatility. The paradigm of the Lambda architecture features key
characteristics (such as, robustness, fault tolerance, scalability, generalization, extensibility,
ad-hoc queries, minimal maintenance, and low-latency reads and updates) to cope with this
complexity. The paper at hand suggest a basic set of strategies to handle the arising challenges
regarding the volatility, heterogeneity, and desired low latency execution by reducing the overall
system timing (scheduling, execution, monitoring, and faults recovery) as well as possible
faults (churn, no answers to executions). The proposed strategies make use of services such as
migration, replication, MapReduce simulation, and combined processing methods (batch- and
streaming-based). Via these services, a distribution of tasks for the best balance of computational
resources is achieved, while monitoring and management can be performed asynchronously in
the background.

Keywords: Internet of Things (IoT), Scheduling, Batch processing, Stream processing, Cloud
computing, Grid computing

1. INTRODUCTION

The concept of the Internet of Things (IoT) can be de-
scribed as the seamless fusion of virtual environments
and contained objects with their real-world counterparts
(Uckelmann et al., 2011). In return, this makes the creation
of robust, flexible, and dynamic applications imperative,
in order to handle heterogeneous and volatile environ-
ments. A major aspect in this regard is represented by
the challenge to handle vast amounts of data, including all
relevant processing steps, in particular data analytics. Due
to this fact, the area of big data analytics has attracted
high levels of attention of industry and academia alike.
This fact is represented by the total increase of data-
driven projects by 125% during the period 2014-2015. 1

So far, the majority of big data deployments were initially
using batch processing-oriented approaches (i.e. the en-
tire amount of data is gathered, stored, and afterwards
processed step-by-step) (Hu et al., 2014). However, batch
processing has no support for low-latency scenarios. Thus,
a new model called stream processing or oriented-to-events
processing has witnessed a huge increase in volume and

1 IDG - http://www.idgenterprise.com/

availability (Tudoran et al., 2014). The handled events
are usually characterized by a small unit size (in the
order of kilobytes), but have overwhelming collection rates,
due to the continuous data flow. To overcome this issue,
new stream processing frameworks have emerged, such as
Apache Storm, Spark, Flink or S4.

Over time, stream processing and its associated processing
engines have evolved up to the point of the introduc-
tion of the Lambda Architecture (LA) paradigm (Marz,
2013). Lambda Architectures are designed to handle vast
amounts of data in conjunction with both batch and stream
processing methods. While batch processing helps to re-
duce latency, to improve data transfer, to provide fault-
tolerance, as well as a comprehensive and accurate view
upon the data, stream processing provides capabilities to
deal with real-time data. Thus, the rise of LAs are directly
related to the rapid growth of Big Data real-time analytics.

According to Ewen et al. (2013), the Lambda Architec-
ture paradigm is the starting point of the so-called 4th

Generation of Data Processing Engines that comprise sev-
eral features regarding the design and implementation of
processing engines for massive data, such as robustness,

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 114

Strategies for Big Data Analytics through
Lambda Architectures in Volatile

Environments

Veith, Alexandre da Silva ∗ Anjos, Julio C. S. dos ∗

de Freitas, Edison Pignaton ∗ Lampoltshammer, Thomas J. ∗∗

Geyer, Claudio F. ∗

∗ Federal University of Rio Grande do Sul (UFRGS), Porto Alegre -RS
- P.O.Box 15064 - Brazil (e-mail: alexandre.veith@ufrgs.br and

{jcsanjos, edison.pignaton, geyer}@inf.ufrgs.br)
∗∗ Danube University Krems, Department for E-Governance and
Administration, Dr.-Karl-Dorrek-Str. 30, 3500 Krems, Austria

(e-mail: thomas.lampoltshammer@donau-uni.ac.at)

Abstract:
Expectations regarding the future growth of Internet of Things (IoT)-related technologies are
high. These expectations require the realization of a sustainable general purpose application
framework that is capable to handle these kind of environments with their complexity in
terms of heterogeneity and volatility. The paradigm of the Lambda architecture features key
characteristics (such as, robustness, fault tolerance, scalability, generalization, extensibility,
ad-hoc queries, minimal maintenance, and low-latency reads and updates) to cope with this
complexity. The paper at hand suggest a basic set of strategies to handle the arising challenges
regarding the volatility, heterogeneity, and desired low latency execution by reducing the overall
system timing (scheduling, execution, monitoring, and faults recovery) as well as possible
faults (churn, no answers to executions). The proposed strategies make use of services such as
migration, replication, MapReduce simulation, and combined processing methods (batch- and
streaming-based). Via these services, a distribution of tasks for the best balance of computational
resources is achieved, while monitoring and management can be performed asynchronously in
the background.

Keywords: Internet of Things (IoT), Scheduling, Batch processing, Stream processing, Cloud
computing, Grid computing

1. INTRODUCTION

The concept of the Internet of Things (IoT) can be de-
scribed as the seamless fusion of virtual environments
and contained objects with their real-world counterparts
(Uckelmann et al., 2011). In return, this makes the creation
of robust, flexible, and dynamic applications imperative,
in order to handle heterogeneous and volatile environ-
ments. A major aspect in this regard is represented by
the challenge to handle vast amounts of data, including all
relevant processing steps, in particular data analytics. Due
to this fact, the area of big data analytics has attracted
high levels of attention of industry and academia alike.
This fact is represented by the total increase of data-
driven projects by 125% during the period 2014-2015. 1

So far, the majority of big data deployments were initially
using batch processing-oriented approaches (i.e. the en-
tire amount of data is gathered, stored, and afterwards
processed step-by-step) (Hu et al., 2014). However, batch
processing has no support for low-latency scenarios. Thus,
a new model called stream processing or oriented-to-events
processing has witnessed a huge increase in volume and

1 IDG - http://www.idgenterprise.com/

availability (Tudoran et al., 2014). The handled events
are usually characterized by a small unit size (in the
order of kilobytes), but have overwhelming collection rates,
due to the continuous data flow. To overcome this issue,
new stream processing frameworks have emerged, such as
Apache Storm, Spark, Flink or S4.

Over time, stream processing and its associated processing
engines have evolved up to the point of the introduc-
tion of the Lambda Architecture (LA) paradigm (Marz,
2013). Lambda Architectures are designed to handle vast
amounts of data in conjunction with both batch and stream
processing methods. While batch processing helps to re-
duce latency, to improve data transfer, to provide fault-
tolerance, as well as a comprehensive and accurate view
upon the data, stream processing provides capabilities to
deal with real-time data. Thus, the rise of LAs are directly
related to the rapid growth of Big Data real-time analytics.

According to Ewen et al. (2013), the Lambda Architec-
ture paradigm is the starting point of the so-called 4th

Generation of Data Processing Engines that comprise sev-
eral features regarding the design and implementation of
processing engines for massive data, such as robustness,

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 114

Strategies for Big Data Analytics through
Lambda Architectures in Volatile

Environments

Veith, Alexandre da Silva ∗ Anjos, Julio C. S. dos ∗

de Freitas, Edison Pignaton ∗ Lampoltshammer, Thomas J. ∗∗

Geyer, Claudio F. ∗

∗ Federal University of Rio Grande do Sul (UFRGS), Porto Alegre -RS
- P.O.Box 15064 - Brazil (e-mail: alexandre.veith@ufrgs.br and

{jcsanjos, edison.pignaton, geyer}@inf.ufrgs.br)
∗∗ Danube University Krems, Department for E-Governance and
Administration, Dr.-Karl-Dorrek-Str. 30, 3500 Krems, Austria

(e-mail: thomas.lampoltshammer@donau-uni.ac.at)

Abstract:
Expectations regarding the future growth of Internet of Things (IoT)-related technologies are
high. These expectations require the realization of a sustainable general purpose application
framework that is capable to handle these kind of environments with their complexity in
terms of heterogeneity and volatility. The paradigm of the Lambda architecture features key
characteristics (such as, robustness, fault tolerance, scalability, generalization, extensibility,
ad-hoc queries, minimal maintenance, and low-latency reads and updates) to cope with this
complexity. The paper at hand suggest a basic set of strategies to handle the arising challenges
regarding the volatility, heterogeneity, and desired low latency execution by reducing the overall
system timing (scheduling, execution, monitoring, and faults recovery) as well as possible
faults (churn, no answers to executions). The proposed strategies make use of services such as
migration, replication, MapReduce simulation, and combined processing methods (batch- and
streaming-based). Via these services, a distribution of tasks for the best balance of computational
resources is achieved, while monitoring and management can be performed asynchronously in
the background.

Keywords: Internet of Things (IoT), Scheduling, Batch processing, Stream processing, Cloud
computing, Grid computing

1. INTRODUCTION

The concept of the Internet of Things (IoT) can be de-
scribed as the seamless fusion of virtual environments
and contained objects with their real-world counterparts
(Uckelmann et al., 2011). In return, this makes the creation
of robust, flexible, and dynamic applications imperative,
in order to handle heterogeneous and volatile environ-
ments. A major aspect in this regard is represented by
the challenge to handle vast amounts of data, including all
relevant processing steps, in particular data analytics. Due
to this fact, the area of big data analytics has attracted
high levels of attention of industry and academia alike.
This fact is represented by the total increase of data-
driven projects by 125% during the period 2014-2015. 1

So far, the majority of big data deployments were initially
using batch processing-oriented approaches (i.e. the en-
tire amount of data is gathered, stored, and afterwards
processed step-by-step) (Hu et al., 2014). However, batch
processing has no support for low-latency scenarios. Thus,
a new model called stream processing or oriented-to-events
processing has witnessed a huge increase in volume and

1 IDG - http://www.idgenterprise.com/

availability (Tudoran et al., 2014). The handled events
are usually characterized by a small unit size (in the
order of kilobytes), but have overwhelming collection rates,
due to the continuous data flow. To overcome this issue,
new stream processing frameworks have emerged, such as
Apache Storm, Spark, Flink or S4.

Over time, stream processing and its associated processing
engines have evolved up to the point of the introduc-
tion of the Lambda Architecture (LA) paradigm (Marz,
2013). Lambda Architectures are designed to handle vast
amounts of data in conjunction with both batch and stream
processing methods. While batch processing helps to re-
duce latency, to improve data transfer, to provide fault-
tolerance, as well as a comprehensive and accurate view
upon the data, stream processing provides capabilities to
deal with real-time data. Thus, the rise of LAs are directly
related to the rapid growth of Big Data real-time analytics.

According to Ewen et al. (2013), the Lambda Architec-
ture paradigm is the starting point of the so-called 4th

Generation of Data Processing Engines that comprise sev-
eral features regarding the design and implementation of
processing engines for massive data, such as robustness,

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 114

Strategies for Big Data Analytics through
Lambda Architectures in Volatile

Environments

Veith, Alexandre da Silva ∗ Anjos, Julio C. S. dos ∗

de Freitas, Edison Pignaton ∗ Lampoltshammer, Thomas J. ∗∗

Geyer, Claudio F. ∗

∗ Federal University of Rio Grande do Sul (UFRGS), Porto Alegre -RS
- P.O.Box 15064 - Brazil (e-mail: alexandre.veith@ufrgs.br and

{jcsanjos, edison.pignaton, geyer}@inf.ufrgs.br)
∗∗ Danube University Krems, Department for E-Governance and
Administration, Dr.-Karl-Dorrek-Str. 30, 3500 Krems, Austria

(e-mail: thomas.lampoltshammer@donau-uni.ac.at)

Abstract:
Expectations regarding the future growth of Internet of Things (IoT)-related technologies are
high. These expectations require the realization of a sustainable general purpose application
framework that is capable to handle these kind of environments with their complexity in
terms of heterogeneity and volatility. The paradigm of the Lambda architecture features key
characteristics (such as, robustness, fault tolerance, scalability, generalization, extensibility,
ad-hoc queries, minimal maintenance, and low-latency reads and updates) to cope with this
complexity. The paper at hand suggest a basic set of strategies to handle the arising challenges
regarding the volatility, heterogeneity, and desired low latency execution by reducing the overall
system timing (scheduling, execution, monitoring, and faults recovery) as well as possible
faults (churn, no answers to executions). The proposed strategies make use of services such as
migration, replication, MapReduce simulation, and combined processing methods (batch- and
streaming-based). Via these services, a distribution of tasks for the best balance of computational
resources is achieved, while monitoring and management can be performed asynchronously in
the background.

Keywords: Internet of Things (IoT), Scheduling, Batch processing, Stream processing, Cloud
computing, Grid computing

1. INTRODUCTION

The concept of the Internet of Things (IoT) can be de-
scribed as the seamless fusion of virtual environments
and contained objects with their real-world counterparts
(Uckelmann et al., 2011). In return, this makes the creation
of robust, flexible, and dynamic applications imperative,
in order to handle heterogeneous and volatile environ-
ments. A major aspect in this regard is represented by
the challenge to handle vast amounts of data, including all
relevant processing steps, in particular data analytics. Due
to this fact, the area of big data analytics has attracted
high levels of attention of industry and academia alike.
This fact is represented by the total increase of data-
driven projects by 125% during the period 2014-2015. 1

So far, the majority of big data deployments were initially
using batch processing-oriented approaches (i.e. the en-
tire amount of data is gathered, stored, and afterwards
processed step-by-step) (Hu et al., 2014). However, batch
processing has no support for low-latency scenarios. Thus,
a new model called stream processing or oriented-to-events
processing has witnessed a huge increase in volume and

1 IDG - http://www.idgenterprise.com/

availability (Tudoran et al., 2014). The handled events
are usually characterized by a small unit size (in the
order of kilobytes), but have overwhelming collection rates,
due to the continuous data flow. To overcome this issue,
new stream processing frameworks have emerged, such as
Apache Storm, Spark, Flink or S4.

Over time, stream processing and its associated processing
engines have evolved up to the point of the introduc-
tion of the Lambda Architecture (LA) paradigm (Marz,
2013). Lambda Architectures are designed to handle vast
amounts of data in conjunction with both batch and stream
processing methods. While batch processing helps to re-
duce latency, to improve data transfer, to provide fault-
tolerance, as well as a comprehensive and accurate view
upon the data, stream processing provides capabilities to
deal with real-time data. Thus, the rise of LAs are directly
related to the rapid growth of Big Data real-time analytics.

According to Ewen et al. (2013), the Lambda Architec-
ture paradigm is the starting point of the so-called 4th

Generation of Data Processing Engines that comprise sev-
eral features regarding the design and implementation of
processing engines for massive data, such as robustness,

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 114



 Veith Alexandre da Silva et al. / IFAC-PapersOnLine 49-30 (2016) 114–119 115

fault tolerance, low latency of reading and updating, scal-
ability, generalization, extensibility, ad-hoc queries, and
minimal maintenance. To achieve these properties, the
architecture foresees a Big Data system to be constructed
in several layers. Anjos et al. (2015) presented the SMART
platform, which is a modular framework for Big Data
analysis. SMART considers a large variety of data sources,
such as distributed datasets and social networks, where
there is a clear need for standardization. The Dispatcher
module (DM) in the SMART platform is an orchestration
system that needs several policies to the managing data
and tasks. This paper aims at the improvement of the
decision-making engine of the Dispatcher module based on
the computational capacity of the machines via scheduling
strategies and advanced execution setups regarding data
streams to achieve an optimal distribution of tasks for the
best balance of computational resources.

This paper is structured as follows: Section 2 sets out the
state-of-the-art for data-intensive computation, establishes
the framework in this landscape, compares it to others and
demonstrates how it works in relation to others considering
heterogeneous infrastructures, hybrid infrastructures, and
hybrid engines. Section 3 presents the SMART platform
and its main modules. Section 4 details the Dispatcher
Module and discusses the strategies required to overcome
the environmental limitations of this module. Section 5
concludes the paper and reports opportunities for future
work.

2. RELATED WORK

2.1 Heterogeneous Infrastructures

JetStream is a set of strategies for efficient transfers of
events between cloud data centers (Tudoran et al., 2014).
JetStream is self-adapting regarding streaming conditions.
It aggregates the available bandwidth and enables the
routing of data through cloud sites. The study by Tudoran
et al. (2014) focuses on event transfers between inter- and
intra-nodes. The authors propose an adaptive cloud batch-
ing in form of an algorithm that aggregates the streams in
batches, resulting in latency reduction. However, it just
considers the latency and not the volatility. The work
concentrates on environments where the computational
resources can break away unexpectedly and the scheduling
policies must be adapted to it.

SMART (Anjos et al., 2015) is a platform that offers an
efficient architecture for Big Data analysis applications for
small and medium-sized organizations. Its implementation
considers heterogeneous data sources and aims at data
analysis scenarios in geo-distributed environments, consid-
ers cost, fault tolerance, network overhead, I/O through-
put, as well as the minimization of data transfers between
computational resources. Yet, these parameters are not
enough to work with volatile environments, especially re-
garding stream processing. To overcome these environment
limitations, it is necessary incorporate information from
physical components, such as memory, CPU speed, and
storage. Thus, the overall capacity impacts the overall per-
formance. In addition, regarding the volatility, replication
must be incorporated as a fault control mechanism.

Similarly, Pham et al. (2016) purpose a generic, extensi-
ble, scalable, fine-grained, and re-configurable multi-cloud
framework. It is based on a lightweight kernel and provides
a hierarchical Domain Specific Language (DSL). The DSL
allows for a fine-grained level of administration. However,
the proposed solution does not control the workload at
the nodes and possible faults, as the Deployment Manager
is just an interface to set the devices and the Virtual
Machines (VMs).

2.2 Hybrid Infrastructures

BIGhybrid summarizes the main features of a Hybrid MR
environment based on the merge of two environments,
namely a Cloud (MR-BlobSeer) environment and a Desk-
top Grid (BitDew-MapReduce) environment (Anjos et al.,
2016). The Global Dispatcher located outside the Desktop
Grid (DG) as well as of the cloud environment features
middleware functionality for handling task assignments
and input data from users. It is a distributed data stor-
age system that manages policies for data splitting and
distribution in batch applications such as MapReduce.
The working principle is similar to the publish/subscribe
service, where the system obtains data and publishes the
computed results. This approach has several drawbacks, if
applied to stream processing, due to delays regarding the
processing of responses.

HybridMR is a model for the execution of MapReduce
on hybrid computation environments (Cloud and DG)
developed by Tang et al. (2015). Two innovative solutions
are proposed to enable such large-scale data-intensive com-
putation: (i) HybridDFS, which is a hybrid distributed
file system. HybridDFS features reliable distributed stor-
age that alleviates the volatility of desktop PCs (i.e.,
fault tolerance and file replication mechanism); and (ii)
a Node priority-based fair scheduling (NPBFS) algorithm
has been developed to achieve both data storage balance
and job assignment balance by assigning each node a pri-
ority through quantifying CPU speed, memory size, as well
as input and output capacity. The NPBFS approach is very
interesting because it uses some miscellaneous environ-
ment variables to schedule the tasks. Although regarding
stream processing, its application is not possible due to
the high flow latency. HybridMR just uses the flow rate
to deploy the tasks, however, the rate does not consider
particular task information.

2.3 Hybrid Engines

Apache Spark is a framework introduced by Zaharia et al.
(2012) that uses resilient distributed datasets (RDDs) and
enables efficient data reuse in a broad range of applica-
tions. RDDs are fault-tolerant, parallel data structures
that are designed to allow users to keep intermediate re-
sults in memory, control their partitioning to optimize data
placement, and manipulate them through a valuable set
of operators. Liao et al. (2015) presented some scheduling
inefficiencies related to the time window that constructs
the RDD. The batch interval needs to be dynamically
adjusted, so that fluctuations within the data rate can be
handled in a production environment and the total delay
of every event can be controlled within a certain range for
real-time scenarios.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

115



Download English Version:

https://daneshyari.com/en/article/5001949

Download Persian Version:

https://daneshyari.com/article/5001949

Daneshyari.com

https://daneshyari.com/en/article/5001949
https://daneshyari.com/article/5001949
https://daneshyari.com

