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Abstract: This paper addresses a novel combination between mixed-integer representations and
potential field constructions for typical multi-agent marine control problems. First, we prove that
for any kind of repulsive functions applied over a function which we denote as sum function,
the feasible domain is piece-wise affine (PWA). Next, concepts like hyperplane arrangements
together with potential field approaches are used for providing an efficient description of the
feasible non-convex domain. This combination offers an original and beneficent computation
of control laws under non-convex constraints. Simulation results over a common application of
obstacle avoidance, which can be extended for unmanned surface vehicles, prove the effectiveness

of the proposed approach.
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1. INTRODUCTION

Autonomy is considered a key technology for continued
growth in several maritime industries, see for instance
examples in Grotli et al. [2015]. Within the subsea oil-
and gas, Remotely Operated Vehicles (ROVs) are currently
being used for Inspection, Maintenance and Repair (IMR)
operations. By reducing the total time of these operations,
costs can be saved, as the support of expensive topside
surface vessels is reduced. Underwater vehicles with au-
tonomous functionalities that can carry out IMR more
safely and efficiently than traditional ROVs, are therefore
of great interest. Particularly interesting is the concept
of resident vehicles, permanently located at the subsea
facility, and which do not need surface support vessels at
all.

Aquaculture is another industry where IMR operations
need to be carried out regularly. One example of an
application is the IMR of net cages at exposed fish farms.
The integrity of the net is crucial to avoid fish escapees,
and with expected move of fish farms to more exposed and
remote locations, autonomous vehicles seems a necessity to
replacement to human divers, Bjelland et al. [2015].

Finally, autonomy is expected to make its way into wa-
terborne transport. The idea is that ships will be able to
traverse their route completely without human presence
on board. The dry bulk carrier has the greatest potential
for becoming completely autonomous as it does not require
much in terms of human supervision or intervention during
the voyage, Rodseth and Burmeister [2012].

A common need for all of these systems, beyond the tradi-
tional functionalities of Guidance, Navigation and Control
(GNC) systems, is the ability to detect and avoid collision,
and replan around static and dynamic obstacles. Collision
avoidance systems are typically divided into deliberative
planning, reactive planning or a hybrid between the two,
Tan et al. [2004]. Deliberative planning is used for planning
to reach a long-term goal, where as reactive planning is
suitable for real-time application where a fast response
is required. A popular tool (in no small part due to it
simplicity) is the potential field, where attractive forces
guide the vehicles to the current target while repulsive
forces keep it away from obstacles, Antonelli et al. [2001].
Commonly, these forces are generated using bell shaped
functions, Antonelli et al. [2011], but more complex el-
ements should be used to model complex geometry like
harbors or coastlines, Pedersen and Fossen [2012].

In general, there are many control engineering problems
where security regions need to be defined for dynamical
systems moving in an environment with obstacles (which
can be also defined by certain regions) so that a control ob-
jective is achieved Grundel et al. [2007]. Typical examples
appear in robotics or multi-agent control in general, where
issues like collision and obstacles avoidance are extensively
studied (e.g., a ship needs to navigate with a safe passing
distance between own ship and a target by indicating an
exact danger area between own ship and the target ship)
Wurman et al. [2008], Barnes et al. [2009], Xargay et al.
[2013].
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The goal of this paper is to shed light on the use of
hyperplane arrangements and polyhedral functions for
efficiently developing repulsive potential fields that can
be further used in control problems as tools for solving
different objectives.

Since the feasible space of this type of problems is usually
non-convex, a good candidate for efficient representations
and availability of optimization solvers is represented by
Mized-Integer-Programming (MIP) Osiadacz [1990]. It has
the ability to include non-convex constraints and discrete
decisions in the optimization problem. However, despite
the advantages previously mentioned, MIP has some nu-
merical drawbacks (the search tree in a typical mixed-
integer problem becomes exhaustive for relatively small
size problems). Some efficient representations together
with a reduction of the number of binary variables used
in the problem formulation are detailed in Prodan et al.
[2016], Stoican et al. [2014] with an application over ob-
stacles avoidance and coverage problems.

Another candidate method for solving motion planning
problems is the artificial potential field Khatib [1986]. To
each element of interest (obstacle, other agent, destination
and the like) a potential component is attached which
combines to obtain the potential field. In turn, this field is
used to provide control actions for the agent (usually some
variation of the field gradient). Howard et al. [2002] uses a
Potential Field-based method for mobile sensor network
deployment. The fields are constructed such that each
node is repelled by both obstacles and by other nodes,
thereby forcing the network to spread itself throughout
the environment. Jadbabaie et al. [2003] and Tanner et al.
[2007] investigate the motions of vehicles to achieve a
common velocity while avoiding collisions with obstacles
and/or agents assumed to be points. Next, Roussos and
Kyriakopoulos [2010] develop navigation functions which
are then used to derive control laws for point-like agents
with an associated disc of predefined radius around them.
One shortcoming of this approach is the possible genera-
tion of traps (local minima). Relevant research on gener-
ating navigation functions that are free from local minima
is available in the literature Rimon and Koditschek [1992].
However, generating a navigation function is computation-
ally involved and thus not suitable for many navigation
problems.

The present paper is motivated mainly by one of our
previous work Prodan et al. [2013], where a predictive
control strategy for trajectory tracking and decentralized
navigation of multi-agent formations was presented. This
work however, concentrates on the efficient construction
of repulsive potential fields. More specifically, the original
contributions are the following:

e we provide a generic framework for non point-like
shapes which may define obstacles and/or safety
regions around an agent;

e we consider the resulted repulsive potentials to gen-
erate a potential field;

e further, the field is considered in order to obtain
(potentially constrained) control laws which govern
an agent trajectory in a multi-obstacle environment.

The following notations will be used throughout the paper.
Given a vector v € R", ||v]|co := max;=1,... » |v;| denotes

the infinity norm of v. Minkowski’s addition of two sets
X and Y is defined as Y @Y ={z+y:ze€ X, yec YV}
The interior of a set S, Int(S) is the set of all inte-
rior points of S. The collection of all possible n. com-
binations of binary variables will be noted {0,1}"° =
{(b1, ... ,bn,) s bi €{0,1},Vi=1,...,n.}. Denote as B, =
{z € R" : ||z||, < 1} the closed unit ball of norm p, where
[|lz|| is the p-norm of vector x. Let 21}, denote the value
of x at time instant k£ + 1, predicted upon the information
available at time k € N.

2. PRELIMINARIES

For collision avoidance problems in a multi-agent or multi-
obstacle context the feasible region is non-convex. Usually,
this region is considered as the complement of a (union
of) convex region(s) which describes an obstacle and/or
a safety region for an agent. Hereinafter, we introduce
some tools and prerequisites which will be instrumental
for potential field constructions.

2.1 Hyperplane arrangements

Consider a collection of N, obstacles in R" described as
polytopic sets:

No
s=Js. (1)
=1

for which the hyperplanes characterizing them are gath-
ered into a finite collection H = {H; };cz from R™:

Hi={zeR": hix=Fk}, i€Z, (2)
with Z = {1... N} and (h;, k;) € R>*" x R.

The hyperplanes in (2) partitions the space into two
disjoint ' regions represented as:
Rj = {!E eR": hux< k/‘l}, (3&)
R; = {l‘ ceR": —h;x < —k‘l} . (3b)
Furthermore, these hypeplanes cut the space R™ into
disjoint cells:
Alo) = (\R7Y, (4)
ieT
which are a feasible intersections of halfspaces (3a)—(3b)
with the signs appropriately taken from the tuple o =

(o(1),...,0(N)).

Then, there exists a sign tuple o; such that S; = A(0y), i.e.,
can be written as an intersection? of regions (3a)-(3b).
Remark 1. Let the collection of all feasible tuples (which
result in non-empty cells) be denoted by ¥ C {—, +}".
Then, collecting all tuples which describe obstacles from
(1) we can denote the collection of interdicted tuples as
Y ={0€¥: Ao) C S} and the collection of available
tuples as ¥\ X. ¢

Such a partitioning of the space is called a hyperplane
arrangement and is the union of all cells (4), that is,
R" = A(H) = U, ey A(0).

L The relative interiors of these regions do not intersect, but their
closures have as common boundary the affine subspace H,;.

2 We assume without loss of generality that each set S; is charac-
terized by a unique tuple.
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