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Abstract: This paper introduces a physics-based and control-oriented underwater vehicle model
for near-surface operations. To construct the model, we follow an energy-based Lagrangian
approach, where the presence of the free surface is incorporated using a free surface Lagrangian.
This effectively modifies the system energy commonly used to derive the Kirchhoff equations,
which govern underwater vehicle motion in an unbounded ideal fluid. The system Lagrangian is
then used to derive the 6-DOF equations of motion for an underwater vehicle maneuvering near
the free surface in otherwise calm seas. To illustrate the additional capabilities of the proposed
model, we present an analytical hydrodynamic solution for a circular cylinder traveling parallel
to the free surface. Comparisons are also drawn between the proposed model and the Cummins
model (Cummins, 1962). While Cummins’ model exactly satisfies the free surface boundary
condition and approximately satisfies the body boundary condition, we choose to exactly satisfy
the body boundary condition and approximately satisfy the free surface condition. This exchange
removes the restriction that limits the Cummins equations to slow-maneuvering in a seaway.
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1. INTRODUCTION

Low-dimensional dynamic models enable the design of
effective guidance, navigation, and control systems for un-
derwater vehicles (Fossen, 1994). These models tradition-
ally neglect free surface effects since underwater vehicles
typically operate well below the surface. When an under-
water vehicle is tasked with maneuvering near the surface,
however, these effects become unavoidable. A dynamic
model which captures the missing physics could improve
model-based control performance for scenarios including
recovery operations and certain communications and sam-
pling tasks. In comparison to an underwater vehicle that is
deeply submerged, one operating near the free surface will
radiate energy away as surface waves. Further, excitation
forces due to incident surface waves can have a significant
impact on the dynamics of an underwater vehicle operating
in the wave affected zone.

For surface ships, Cummins (1962) devised a set of integro-
differential equations to comprehensively capture the radi-
ation forces. He proposed a hydrodynamic solution which
satisfies the necessary boundary conditions for a vessel
subject to small perturbations from a nominal course and
heading. The equations incorporate the so-called mem-
ory effects, represented by a convolution integral that
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accounts for the effect of waves generated by past actions
of the vessel. These equations were utilized by Bailey
et al. (1998), where employing the Cummins framework
enabled the unification of the linear (small perturbation)
models for maneuvering and seakeeping. The model does
not readily support control design, however, because the
memory effects are not represented as ordinary differential
equations. Kristiansen et al. (2005) employed model reduc-
tion techniques to approximate the memory effects using
additional dynamic states. These model reduction results
were implemented by Fossen (2005) and Perez (2005) to
construct unified, nonlinear state space models. However,
due to Cummins’ original assumptions, the resulting model
is limited to slow maneuvers in a seaway. This limitation is
not an issue in certain, realistic scenarios, such as rudder
roll stabilization (Perez, 2005). Interest remains, however,
in developing a control-oriented unified model that accu-
rately describes more aggressive maneuvering.

Fossen (1994) describes how a physics-oriented model for
vessel motion is simplified for a deeply submerged un-
derwater vehicle. Modeling efforts often begin with the
Kirchhoff equations (Lamb, 1932), which exactly describe
the motion of an underwater vehicle operating in an in-
finite domain of ideal fluid, where the fluid motion is
due exclusively to the motion of the vehicle. Leonard
(1997) showed that the Kirchhoff equations for a neu-
trally buoyant, underwater vehicle with offset centers of

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.10.323



Thomas Battista et al. / IFAC-PapersOnLine 49-23 (2016) 068—073 69

mass and buoyancy could be expressed in a non-canonical
Hamiltonian form, a structure which is useful for nonlinear
control design and stability analysis (Woolsey and Techy,
2009; Valentinis et al., 2015). Thomasson and Woolsey
(2013) used Lagrangian mechanics to obtain a modified
dynamic model that approximates the complex body-fluid
interaction when an underwater vehicle is subject to a
non-uniform and unsteady background flow. They demon-
strated that the approximation compares well with ana-
lytical solutions for several special cases. This model was
adapted to the case of an underactuated, underwater vehi-
cle operating in monochromatic, plane progressive waves
in (Battista et al., 2015). Force predictions obtained using
the simplified model compared well with the analytical
potential flow solution for a stationary, 2-D cylinder. The
scenario of long-crested, irregular seas was analyzed in
(Battista and Woolsey, 2015). The free surface is omitted
from the analysis described in these papers, so the results
fail to capture free surface effects.

This paper is intended to be a step toward constructing
a nonlinear, parametric, control-oriented model for an un-
derwater vehicle operating in waves under the free surface.
The four conventional potential flow hydrodynamic forces
that arise in these operating conditions are the Froude-
Krylov, diffraction, added mass, and potential damping
forces. The Froude-Krylov forces are incorporated using
the Thomasson-Woolsey model (Battista et al., 2015; Bat-
tista and Woolsey, 2015). This work complements those
results by using a first principles formulation of the free
surface Lagrangian to augment the system energy used to
derive Kirchhoff’s equations. The present formulation ne-
glects incident wave effects, but captures deviations in the
added mass, radiative damping, and free surface suction
that arise in free surface proximity operations.

The remainder of the paper is organized as follows. The
system Lagrangian, including the free surface Lagrangian,
is constructed in Section 2. The equations of motion
are derived using a modified form of the Euler-Lagrange
equations in Section 3. Some additional features of the
equations of motion are explored using the simplified case
of a 2-D cylinder in Section 4. Conclusions and future work
are presented in Section 5.

2. DERIVING THE LAGRANGIAN

Prior to defining the Lagrangian, it is necessary to identify
the relevant contributors to the system energy. When no
free surface is present, Lamb (1932) defines the system
as the combination of the underwater vehicle and the
surrounding fluid continuum. For vessels operating at or
near the free surface, this fluid boundary serves as a third
contributor to account for the energy associated with free
surface perturbations. We adopt this three-part system
when constructing the Lagrangian, recognizing that the
resulting model must capture the differences between
surface ships and underwater vehicles operating near the
free surface. For instance, in the extreme case where the
vehicle floats on the surface, the free surface effects would
be identical to those for surface ships. In the other extreme,
where the vehicle is deeply submerged, the model must
reduce to that described by Lamb (1932). Figure 1 depicts
the system interactions for ships and subsea vessels. The

greyed-out writing and dashed links between the free
surface and the body emphasize the weaker connection
between the two subsystems for underwater vehicles. To
begin, we consider a system which consists of the body
(b), a semi-infinite fluid volume (f), and a free surface (s),
and define the system Lagrangian accordingly:

L="Ly+ Li+ Ls. (1)
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Fig. 1. The system energy storage devices, and mechanisms
which transfer energy between them.

2.1 The Rigid Body Lagrangian

Consider an FEarth-fixed frame with coordinate vectors
[t1 42 3], as shown in Figure 2, with reference point O
in the unperturbed free surface, and the corresponding
coordinates & = [z y z]T. A body-fixed frame at the body
center of buoyancy B and coordinate vectors [b; by bs)
coincide with the vehicle principal axes. Let & = [T § Z]
be the coordinates corresponding to the body axes. Let axy,
denote the location of B with respect to O, and define the
orientation of the body axes in terms of the proper rotation
matrix R € SO(3). Then, let v = [vTw?]T denote the
body velocity, expressed in the body frame, consisting of
the translational velocity v = [u v w]T and the angular
velocity w = [p ¢ r]7. Let Zem represent the location of
the center of mass in the body frame. Then, the rigid body
inertia matrix, expressed in the body frame, is given by !

_ I}/Ib _mi'cm
Mb - <m5:cm Ub ) ’ (2)

Following Leonard (1997), we define the rigid body’s

contribution to the system Lagrangian as follows

1
Ly, = §VTMb1/ — MGEem - R 5. (3)

2.2 The Fluid Lagrangian

The rigid hull B acts as the boundary between the rigid
body and the surrounding continuum of fluid particles F.
It is assumed that the fluid domain extends infinitely far in
all directions except for one, which is bounded by the free
surface S. Potential flow theory allows the fluid velocity
field v = [ug vr wr]” to be expressed in terms of a single
scalar potential ¢(x):

Vf = —Vgi) (4)

L The operator * maps a three-vector to a 3 X 3 skew symmetric
matrix satisfying ab = a x b.
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