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Abstract: The paper provides a comparison between different control allocation techniques in
over-actuated Autonomous Underwater Vehicles. The pseudoinverse, Linear Programming (LP),
Quadratic Programming (QP), Mixed Integer Linear Programming (MILP) and Mixed Integer
Quadratic Programming (MIQP) are evaluated in simulation on the V-Fides vehicle model.
The MILP and MIQP techniques allow to include in their implementations a more detailed
characterization of the non-linear static behaviour of the actuators. This customizability can be
also exploited to improve the practical stability of the system. The metrics used for comparison
include the maximum attainable forces and torques, the integral of the error allocation and
the required thrusters effort. Our simulation results show that, in particular with respect to
thrusters effort, MILP and MIQP are the preferred allocation methods. The computational
complexity associated to both methods is not such to compromise their implementation in
operating vehicles; in particular, the MILP version is currently implemented in the V-Fides
vehicle.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Optimal Control allocation, Quadratic Programming, Linear Programming,
Mixed-Integer Linear Programming, Mixed-Integer Quadratic Programming

1. INTRODUCTION

In the last decade improvements to control allocation
methods have been proposed to achieve more accuracy,
efficiency and effectiveness in control systems. Terrestrial,
aerospace and marine vehicles can be over-actuated sys-
tems to improve manoeuvrability and to add flexibility
and robustness. In the review paper, Johansen and Fossen
(2013) and reference therein, the multidisciplinarity of
control allocation problem is highlighted: from aerospace
to underwater vehicles, solutions have been proposed and
the cross-disciplinary transfer of ideas has been important
for mutual progress in each sector. One of the advantages
of over-actuated vehicles is their redundancy, allowing to
a full or partial recovery if a fault on an actuator or
effector occurs (Sarkar et al., 2002; Caiti et al., 2015).
A modular design separating the control system from
the control allocation allows an easy and portable im-
plementation (Johansen and Fossen, 2013). Despite the
advantages, sometime a complex resolution method must
be implemented to solve the control allocation problem. In
order to obtain a solution among the multiple ones that
can result from redundancy, several methods based on the
formulation of an optimal problem have been proposed in
past years: from the classic approach, where unconstrained
fo-norm minimum optimal problem is solved by pseu-
doinverse technique (Fossen and Sagatun, 1991), to more
complex and customizable structures like Linear Program-
ming (LP) and Quadratic Programming (QP) (Bodson,

2002; Enns, 1998; Bodson and Frost, 2011) where the
force generated by actuators are considered linear regard-
ing to commanded input. More computational demanding
methods, based on Mixed-Integer formulations, can be
considered to describe non-linear static characterization
of the actuators. The main principle is to break in several
points the non-linear function to obtain a piecewise linear
form implementable into the optimal problem as linear
constraints. In Bemporad and Morari (1999) is explained
how the piecewise linear functions are implemented in
Model Predictive Control framework, while in Bertsimas
and Tsitsiklis (1997) a general formulation is exposed.
A similar approach is implemented in Bolender and Do-
man (2004), where a Mixed Integer Linear Programming
(MILP) optimal problem is described to solve the control
allocation in a two-stage fashion, defining in each one
a different cost functional. Moreover, a Mixed Integer
Quadratic Programming (MIQP)-like formulation is pro-
posed in Johansen et al. (2003) to solve the control allo-
cation problem in marine vessels with rudder actuators,
where the set of attainable thrust vectors is non-convex.

This paper presents a comparison between several control
allocation techniques to evaluate the respective pros and
cons as applied to an over-actuated Autonomous Underwa-
ter Vehicle (AUV). In particular pseudoinverse, LP, QP,
MILP and MIQP are considered. But for the pseudoin-
verse, the other formulations exploit the customizability of
the structure to improve the manoeuvrability and stability
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of the vehicle. The MILP and MIQP are implemented
including the dead-zone behaviour of the actuators static
response into the optimal problem. The following metrics
are used for comparison: the maximum attainable forces
and torques, the integral of the error allocation and the
required thrusters effort. The test case vehicle is the one
developed within V-Fides Project and illustrated in Caiti
et al. (2014). The vehicle simulator handles the hydrody-
namic forces, kinematic equations, system control with al-
location module and a detailed characteristic of actuators
response.

The paper is organized as follow: in the next section
the formal statement of the various optimal allocation
problems is given. In Section 3 the main feature of the
vehicle are described, the metric used for comparison is
formally stated, and simulation results on a typical vehicle
survey mission are reported. In last section results are
discussed and conclusions are given.

2. PROBLEM STATEMENT

The control allocation problem can be defined as finding
a set of input commands to the actuators such that the
forces and torques exerted on manoeuvrable Degrees Of
Freedom (DOFSs) of the system are equal to the desired
ones computed by the control module. In over-actuated
systems the control allocation problem may admit multiple
solutions due to the actuation redundancy. Therefore,
several approaches were proposed in the past years to
reformulate the control allocation into an optimal problem
based on a proper cost function.

2.1 Pseudoinverse

In the simple and classic approach (Fossen and Sagatun,
1991), the allocation problem for over-actuated vehicles is
reformulated as a £»-norm optimal problem, which can be
formalized as:

ffwy
subject to 7y —Tf =0

min

(1)

By defining as n the number of actuators and m the
manoeuvrable DOFs, f € R™ are the forces produced by
the actuators and W € R™ ™ is a weighting positive-
definite matrix. The static transformation matrix T €
R™*™ includes the information of the position and thrust
axes of each actuator and it is employed to map the forces
generated by each actuator in the total forces and torques
exerted on the vehicle. Therefore, the objective of the
optimal problem is to minimize the error between the
desired generalized forces 74 € R™ and the ones exerted
on the vehicles. The solution to the minimization in (1),
can be thus obtained via

T =w T (TwiTT) !

w

f = TJ]Td (2)

Note that the problem is unconstrained regarding the
resulting forces, that means to have at disposal hypothet-
ical unlimited forces from actuators. To achieve a feasi-
ble solution, the forces are chunked with the saturations

imposed by the physical limitations of the actuators. A
simple way to obtain the normalized input commands to
the actuators, u € [—1,1] C R™, is to define the linear
relation f = Ku, with K € R"*" the diagonal matrix of
the gains that characterize the static response of actuators.

w=K 1Tl (3)

A further practical approach can be adopted to introduce
a more detailed static characteristic into the problem by
introducing a look-up table downstream of the control allo-
cation. Nevertheless, this formulation is somehow limiting
since the only DOF available is the weighting matrix W.

2.2 Quadratic & Linear Programming

Control allocation can be cast as a minimization problem
of the errors between the allocated and desired forces with
respect to a chosen norm || - [|,.

win || 72~ T | (@)

A first step to add more information about the actuators
in the problem is to insert the saturation as constraints on
the allocated forces. Choosing the /3-norm, the resulting
optimal problem is solved with quadratic programming
methods and can be formalized as following.

asTHsozS
Td — Tf = Qg (5)
fmin < f < f’maz‘

Where a, € R™ is the vector of the residuals, f,.;, and
fmaz the lower and upper bounds respectively imposed by
the saturations and Hy; € R™*™ is the definite positive
weighting matrix. The formulation (5) takes into account
only the minimization of the residuals, thus multiple sub-
optimal solutions may exist with respect to the forces, f.
Therefore, in energy saving mindset the f5-norm of the
allocated forces is evaluated in the cost functional.

min
Qs

min
,0s

frHif +alHeay

Td—Tf:OLS (6)
fmin < f < fmaz

The Hy € R™*™ is the definite positive weighting matrix
associated to the forces generated by the actuators. Ob-
serving the formulations (1) and (6), besides the addition
of the saturations into the problem there is one more
DOF in tuning perspective, Hs. In the later section will
be shown how the correct tuning of H, can improve the
practical stability of the system by a judicious choice of
the weighting matrix.

The minimization (4) can be cast as well as ¢;-norm
and obtain a comparable formulation of (6). Thus,
the sum of the quadratic residuals in the cost func-
tional (6) are substituted as sum of the absolute values,
E;ZI KSz‘ |a5i |+ZZL:1 Kfz‘ |fl ‘7 where K,sT € R™ and
K ]7; € R™ are the positive weighting vector of the residuals
as and f, respectively. In (Boyd and Vandenberghe, 2004)
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