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Abstract: The study of self regulated gene expression networks must be modelled using
chemical master equations. However, its solution is not available in the most cases. In this
work, we derive a partial integral differential model as the continuous counterpart of one
master equation with jump process. This model allows us to reproduce numerically the dynamic
behaviour of the protein distribution whose steady state admits an analytical solution. To study
the convergence to the equilibrium, we test the applicability of entropy methods. Using these
techniques we find numerical evidences of exponential stability. The derivation and methods
presented can be of the help to extend the applicability of this model to more complex gene
regulatory networks including more than one protein.
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1. INTRODUCTION

The study of the DNA expression (transcription into
messenger RNA and translation into proteins) and their
regulation becomes essential to predict the response of
cells to environmental signals. The regulatory mechanism
normally takes place under the union of proteins to the
DNA binding sites that inhibit or activate its expression.
Typically, the number of molecules involved in the regu-
lation mechanism is small, thus making gene expression
a truly stochastic process (Gillespie, 2007; Kepler and
Elston, 2001).

The chemical master equation (CME) is at the basis of
dynamic reaction network modelling (Kepler and Elston,
2001; Paulsson, 2005; Mackey et al., 2011; Sherman and
Cohen, 2014) as the method which incorporates the un-
derlying stochastic behaviour. However, the CME solution
cannot be obtained in most cases, due to the large (even
infinite) number of coupled equations. Although computa-
tionally very involved, extensive stochastic simulations via
SSA (Gillespie, 1976) are typically the approach adopted
to reproduce the CME dynamics. Alternatives are CME
approximations, such as, moment methods (Engblom,
2006), finite state projection (Munsky and Khammash,
2006) or hybrid models (Jahnke, 2011). Unfortunately,
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those methods are only able to approximate the CME
solution in quite particular situations.

In case of gene self regulatory networks, the obstacles to
the solution of the CME can be overcome by the 1D partial
integral differential equation (PIDE) model proposed by
Friedman et al. (2006). To the best of our knowledge, a
rigorous deduction of the PIDE model from the CME has
not been reported yet. Here we show that, under protein
production in bursts (Friedman et al., 2006; Shahrezaei
and Swain, 2008; Dar et al., 2012), the PIDE model can
be deduced as the continuous counterpart of one CME
with jump processes. Using this 1D PIDE model, we can
both reproduce the dynamics of one protein distribution
and obtain an analytical solution for the steady state.

In addition, we make use of an entropy method (Michel
et al., 2005; Cáceres et al., 2011; Carrillo et al., 2011)
to study stability of steady state solutions of the PIDE
system. In particular, we test the applicability of entropy
methods show asymptotic stability and give numerical
evidences of the exponential rate of convergence.

The contribution is structured as follows: In Section 2 we
discuss the gene regulatory network and its corresponding
CME and PIDE dynamic descriptions. The entropy meth-
ods together with results on asymptotic and exponential
stability are presented in Section 3. We end up with some
conclusions and future work.
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support from grants BES-2013-063112 and EEBB-I-16-10540.

those methods are only able to approximate the CME
solution in quite particular situations.

In case of gene self regulatory networks, the obstacles to
the solution of the CME can be overcome by the 1D partial
integral differential equation (PIDE) model proposed by
Friedman et al. (2006). To the best of our knowledge, a
rigorous deduction of the PIDE model from the CME has
not been reported yet. Here we show that, under protein
production in bursts (Friedman et al., 2006; Shahrezaei
and Swain, 2008; Dar et al., 2012), the PIDE model can
be deduced as the continuous counterpart of one CME
with jump processes. Using this 1D PIDE model, we can
both reproduce the dynamics of one protein distribution
and obtain an analytical solution for the steady state.

In addition, we make use of an entropy method (Michel
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Fig. 1. Schematic representation of the transcription-
translation mechanism under study. The promoter as-
sociated with the gene of interest is assumed to switch
between active (DNAon) and inactive (DNAoff)
states, with rate constants kon and koff per unit time,
respectively. In this study, the transition is assumed
to be controlled by a feedback mechanism induced by
the binding/unbinding of a given number ofX-protein
molecules, what makes the network self-regulated.
Transcription of messenger RNA (mRNA) from the
active DNA form, and translation into protein X are
assumed to occur at rates (per unit time) km and kx,
respectively. kε is the rate constant associated with
transcriptional leakage. Both mRNA and X-protein
degradation are assumed to occur by first order pro-
cesses with rate constants γm and γx, respectively.

2. SELF REGULATORY GENETIC SYSTEMS

The genetic system under study consists of a transcription-
translation network involving a single gene that expresses
a protein X which regulates its own production. The
representative biochemical steps, including protein and
mRNA degradation, are depicted in Fig. 1. We represent
also a basal transcription level from the inactive promoter
which takes place at a rate constant kε lower than km,
(Friedman et al., 2006; Ochab-Marcinek and Tabaka, 2015;
Huang et al., 2015).

Typically, the self regulation mechanism is described by
one input function of the form (Friedman et al., 2006;
Ochab-Marcinek and Tabaka, 2015; Pájaro et al., 2015):

c(x) = [1− ρ(x)] + ρ(x)ε , (1)

with x representing protein level, ε = kε

km
∈ (0, 1) the

transcriptional leakage constant and ρ(x) a Hill type
function (Alon, 2007) that relates x to the fraction of
DNAoff :

ρ(x) =
xH

xH +KH
. (2)

where K =
koff

kon
is an equilibrium constant and H the

Hill coefficient, proportional to the number of protein
molecules bonded to the promoter. Its values can be
positive or negative depending on whether the circuit
represses or promotes protein production, thus resulting
into a negative or positive feedback, respectively.

2.1 Continuous formulation deduction

In the following, we consider gene self regulatory networks
where the degradation rate of mRNA is much faster than
the corresponding to protein, so that γm/γx ≫ 1. Such
condition is verified in many gene regulatory networks,
both in prokaryotic and eukaryotic organisms (Shahrezaei

and Swain, 2008; Dar et al., 2012), and results in protein
being produced in bursts. As suggested in Friedman et al.
(2006); Elgart et al. (2011), the burst size (denoted by b =
kx

γm
) is typically modelled by an exponential distribution.

The conditional probability for protein level to jump from
a state y to x after a burst is proportional to:

ω(x− y) =
1

b
exp

[

−(x− y)

b

]

(3)

This burst behaviour in protein production can be mod-
elled by the superposition of jumps from lower states as
it is depicted in Fig. 2. We define gni : N → [0 1] as the
transition probability for a jump going from a lower state
i into a state n, assuming that the size of the jump follows
the expression (3). Furthermore, the transition probability
is proportional to the messenger RNA production rate, so
that, gni is defined as:

gni := kmc(i)ω(n− i). (4)

Let P : R+ × N → [0 1], be the probability of having n
proteins at time t. The time evolution of P (t, n) is given by
a chemical master equation (Gardiner, 2009; Van Kampen,
2007) with jumps that reads:

∂P (t, n)

∂t
=

n−1
∑

i=0

gni P (t, i)−
∞
∑

i=n+1

ginP (t, n)

+rn+1P (t, n+ 1)− rnP (t, n),

(5)

where rn = γxn represents the degradation transition
probability. In order to obtain a continuous version of (5)
we define p : R+ × R+ → R+, as the continuous protein
probability distribution, and add and subtract gnnP (t, n)
at the right hand side of (5) to get:

n−1
∑

i=0

gni P (t, i)−
∞
∑

i=n+1

ginP (t, n) =

n
∑

i=0

gni P (t, i)−
∞
∑

i=n

ginP (t, n).

(6)

Next, approximating the summations at the right hand
side of the last equation by integrals and substituting in
(5) we obtain:

∂p(t, x)

∂t
=

∫ x

0

gxyp(t, y) dy −

∫

∞

x

gyxp(t, x) dy

+rx+1p(t, x+ 1)− rxp(t, x),

(7)

where the integer indexes n and i are substituted by real
x and y respectively. Note that the second term at right
hand side in (7) reduces to:

∫

∞

x

gyxp(t, x) dy = kmc(x)p(t, x)

∫

∞

x

ω(y − x) dy, (8)

with
∫

∞

x
ω(y − x) dy = 1. Employing the Taylor theorem

to approximate the third term at right hand side in (7) to
the first order, we also get:

rx+1p(t, x+ 1) ≈ rxp(t, x) +
∂ [rxp(t, x)]

∂x
(9)

Finally, replacing the last expressions (8)-(9) in (7) and
using a dimensionless time, τ = γxt, associated with the
time scale of protein degradation, we obtain the temporal
evolution of the probability distribution p(τ, x), which
reads as:
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