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Abstract The entropy production of thermodynamical systems with reversible (conservative)
and irreversible (dissipative) phenomena is used as a Lyapunov candidate function to address
stability properties. First, based on the conjugated variables of the extensive properties, the
dissipative and conservative phenomena are identified, then, the dynamic behavior of entropy
production is obtained. Based on the properties of the entropy function Hessian, it is found
that dissipative phenomena contribute to stability and attraction of the thermodynamical
equilibrium. In particular, when only dissipative phenomena are present, the entropy production
is a Lyapunov function that guarantees global or local stability, depending on the nonlinearities.
Complex behaviors, for instance transitory increments of the entropy production, are due to both
conservative phenomena and, far from equilibrium, non linearities of dissipative phenomena.
Finally, a case study consisting in a gas-piston system is presented to illustrate these ideas.
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1. INTRODUCTION

Dissipative systems constitute a very important class of
dynamical systems of particular interest in engineering
and physics (Nicolis, 1986; Willems, 1972). The notion of
dissipativity has been widely used to analyze open systems
for which it is assumed that the dissipated energy, which is
always non-negative, is the difference between the stored
energy variation within the system and the amount of
energy supplied by the environment or surroundings. Thus,
given this energy–balance feature, it is clear that system
stability is intimately related to dissipativity. In this con-
text, it has been shown that many physical processes may
be dissipative, including those that are constrained by the
laws of thermodynamics (Rojas et al., 2008). In particular,
these concepts have been successfully applied to mechan-
ical and electrical systems (García-Canseco et al., 2010;
Jeltsema and Scherpen, 2007, 2009; Ortega et al., 2001) to
address stability properties in terms of energy or power.
However, this approach is not easy to apply, and has not
been completely successful, when applied to chemical (or
thermodynamical) systems, for instances reacting systems
(Favache and Dochain, 2009).

Some results in interpreting stability properties for ther-
modynamical systems based on the irreversibility have
been already achieved (Alonso and Ydstie, 2001; Favache,
2009; Favache and Dochain, 2009; Ydstie, 2002; Ydstie
and Alonso, 1997). In particular, when a thermodynam-

ical system is isolated, its total energy and mass remain
constant, making impossible to use the energy or power to
analyze stability properties, and still, due to irreversibility,
the system is able to attain stable equilibrium points. In
this context, irreversibility immediately evokes quantities
related to the entropy (e.g. the entropy itself, the entropy
production, the availability) to be considered as Lyapunov
function candidates. For instance, García-Sandoval et al.
(2016) presented a procedure to use the entropy produc-
tion as a Lyapunov (or storage) function for a class of
isolated (or open) thermodynamical systems.

In many cases, physical systems are composed of both
irreversible and reversible processes, and their interaction
may produce more complex behavior. For mechanical sys-
tems or fluid dynamics, the reversible processes have been
captured in the definition of some differential geometric
structures such as Poisson brackets (Arnold, 1989; Olver,
1993), while asymmetric bracket are used to define irre-
versible processes (Grmela and Öttinger, 1997; Ortega and
Planas-Bielsa, 2004). Physical systems, subject simultane-
ously to reversible and irreversible processes, have been
expressed as the sum of gradient and pseudo-Hamiltonian
dynamical systems (Dalsmo and van der Schaft, 1998;
García-Sandoval et al., 2015; Grmela and Öttinger, 1997;
Öttinger and Grmela, 1997).

In this contribution, we combine the results presented in
(García-Sandoval et al., 2016) and (García-Sandoval et al.,
2015) to include dissipative and conservative processes
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1. INTRODUCTION

Dissipative systems constitute a very important class of
dynamical systems of particular interest in engineering
and physics (Nicolis, 1986; Willems, 1972). The notion of
dissipativity has been widely used to analyze open systems
for which it is assumed that the dissipated energy, which is
always non-negative, is the difference between the stored
energy variation within the system and the amount of
energy supplied by the environment or surroundings. Thus,
given this energy–balance feature, it is clear that system
stability is intimately related to dissipativity. In this con-
text, it has been shown that many physical processes may
be dissipative, including those that are constrained by the
laws of thermodynamics (Rojas et al., 2008). In particular,
these concepts have been successfully applied to mechan-
ical and electrical systems (García-Canseco et al., 2010;
Jeltsema and Scherpen, 2007, 2009; Ortega et al., 2001) to
address stability properties in terms of energy or power.
However, this approach is not easy to apply, and has not
been completely successful, when applied to chemical (or
thermodynamical) systems, for instances reacting systems
(Favache and Dochain, 2009).

Some results in interpreting stability properties for ther-
modynamical systems based on the irreversibility have
been already achieved (Alonso and Ydstie, 2001; Favache,
2009; Favache and Dochain, 2009; Ydstie, 2002; Ydstie
and Alonso, 1997). In particular, when a thermodynam-

ical system is isolated, its total energy and mass remain
constant, making impossible to use the energy or power to
analyze stability properties, and still, due to irreversibility,
the system is able to attain stable equilibrium points. In
this context, irreversibility immediately evokes quantities
related to the entropy (e.g. the entropy itself, the entropy
production, the availability) to be considered as Lyapunov
function candidates. For instance, García-Sandoval et al.
(2016) presented a procedure to use the entropy produc-
tion as a Lyapunov (or storage) function for a class of
isolated (or open) thermodynamical systems.

In many cases, physical systems are composed of both
irreversible and reversible processes, and their interaction
may produce more complex behavior. For mechanical sys-
tems or fluid dynamics, the reversible processes have been
captured in the definition of some differential geometric
structures such as Poisson brackets (Arnold, 1989; Olver,
1993), while asymmetric bracket are used to define irre-
versible processes (Grmela and Öttinger, 1997; Ortega and
Planas-Bielsa, 2004). Physical systems, subject simultane-
ously to reversible and irreversible processes, have been
expressed as the sum of gradient and pseudo-Hamiltonian
dynamical systems (Dalsmo and van der Schaft, 1998;
García-Sandoval et al., 2015; Grmela and Öttinger, 1997;
Öttinger and Grmela, 1997).

In this contribution, we combine the results presented in
(García-Sandoval et al., 2016) and (García-Sandoval et al.,
2015) to include dissipative and conservative processes
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analyze stability properties, and still, due to irreversibility,
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production, the availability) to be considered as Lyapunov
function candidates. For instance, García-Sandoval et al.
(2016) presented a procedure to use the entropy produc-
tion as a Lyapunov (or storage) function for a class of
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In many cases, physical systems are composed of both
irreversible and reversible processes, and their interaction
may produce more complex behavior. For mechanical sys-
tems or fluid dynamics, the reversible processes have been
captured in the definition of some differential geometric
structures such as Poisson brackets (Arnold, 1989; Olver,
1993), while asymmetric bracket are used to define irre-
versible processes (Grmela and Öttinger, 1997; Ortega and
Planas-Bielsa, 2004). Physical systems, subject simultane-
ously to reversible and irreversible processes, have been
expressed as the sum of gradient and pseudo-Hamiltonian
dynamical systems (Dalsmo and van der Schaft, 1998;
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in stability analysis. The paper is organized as follows.
In section 2 the thermodynamical systems in study and
their properties are presented. In section 3, based on the
entropy production, the stability analysis is carried out,
focusing on the interactions between the dissipative and
conservative phenomena. Finally, in section 4, a case study
is presented.

2. THERMODYNAMICAL SYSTEMS

Let us consider a system Π composed of n subsystems
(see scheme in Fig. 1) where thermodynamical phenom-
ena take place, for instance gas expansion, heat or mass
transfer, convective flow, chemical reactions, etc. Each
subsystem is characterized by a set of extensive prop-
erties {Ni, Ui, Vi,qi,pi} as well as its associated inten-
sive properties, for instance

{
−µi, Ti, Pi,φpot,vi

}
, where

Ni ∈ RCi+, Ui ∈ R, Vi ∈ R+, qi ∈ R3 and pi ∈ R3 are the
moles, internal energy, volume, position and momentum,
with Ci is the number of chemical species that interact in
subsystem i, and µi ∈ RCi+, Ti ∈ R+, Pi ∈ R+, φpot ∈ R3

and vi ∈ R3 are the chemical potentials vector for each
compound, temperature, pressure, potential force vector
and velocity vector of subsystem i, with i = 1, 2, . . . , n,
respectively. Finally, the momentum is equal to pi = mivi,
where

mi =MT
w,iNi, (1)

with Mw,i ∈ RCi+ as the molar mass vector. By consid-
ering that the total energy of each subsystem depends on
internal energy, Ui, potential energy, Φpot =

´
φpot · dqi,

and kinetic energy, Ki =
1
2
pi·pi

mi
= 1

2mi (vi · vi), and the
total energy is

Ei =Ui +

ˆ
φpot · dqi +

1

2

pi · pi

mi
. (2)

Depending on the particular configuration and character-
istics of each subsystem, the state variables that com-
pletely define the behavior of each subsystem, ηi ∈ Rωi

for i = 1, 2, . . . , n, is the set or a subset of extensive
properties {Ni, Ei, Vi,qi,pi}, where internal energy has
been substituted by total energy using eq. (2). Then, the
total mass and energy for system Π are linear functions of
η, i.e.,

m =
n∑

i=1

mi = MTη +m0 (3)

and

E =
n∑

i=1

Ei = ΥTη + E0, (4)

where M and Υ are constant matrices and m0 and E0

are the mass and total energy of static compounds. For
instance, for η = col {N, E}, with N ∈ RC+, it holds
M = col {Mw, 0} and Υ = col {0C×0, 1}.

2.1 Entropy and conjugated forces

According to the second principle of thermodynamics,
it is possible to introduce for each subsystem Π, as for
any macroscopic system, a concave real-valued function
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Figure 1. Scheme of system Π.

called entropy Si : Rωi → R at least twice differ-
entiable that depends on the extensive properties, i.e.,
Si = Si (Ni, Ei, Vi,qi,pi). Under the assumption of local
equilibrium, the derivative of the entropy can be obtained
by the Gibbs relation (Kjelstrup et al., 2010): dGi =
µT

i dNi = dUi + PidVi − TidSi. By considering eqs. (1)
and (2), dSi is equivalently written as

dSi =
1

Ti
dEi +

Pi

Ti
dVi −

(
µi − 1

2 (pi · pi)Mw,i

)T
Ti

dNi

−
φpot · dqi

Ti
− vi · dpi

Ti
. (5)

From this expression, it is possible to identify the so-

called conjugated variables
{
− (µi− 1

2 (pi·pi)Mw,i)
Ti

, 1
Ti
, Pi

Ti
,

− φpot

Ti
,−vi

Ti

}
of the extensive properties, {Ni, Ei, Vi,

pi}. Then, depending on the particular configuration and
characteristics of each subsystem, the entropy gradient has

the form ζi :=
(

∂Si

∂ηi

)T

∈ Rωi , i = 1, 2, . . . , n.

In addition, since the entropy is a concave function (Öt-
tinger, 2005), its Hessian matrix, Ωi :=

∂ζi

∂ηi
≤ 0, is nega-

tive (semi-)definite. Finally, the total entropy of system Π
is the sum of the entropy of each subsystem

S (η) =
n∑

i=1

Si (ηi) , (6)

therefore, its gradient is

ζ :=

(
∂S

∂η

)T

= col

{(
∂Si

∂ηi

)T

, i = 1, 2, . . . , n

}
, (7)

while its Hessian is a block-diagonal matrix, Ω :=
diag {Ωi, i = 1, 2, . . . , n} ≤ 0, that by construction is neg-
ative (semi-)definite.

2.2 Dynamical behavior

In this work, we consider that each subsystem is homo-
geneous or perfectly mixed, i.e., there is no spatial depen-
dency, while the total system is isolated from the surround-
ings. Therefore, the dynamical model that describes the
behavior of the extensive variables from molar, energy and
momentum balances and state equations has the general
form
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