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Abstract: This paper analyses two approaches to the description of thermodynamic evolution.
The first approach describes the dynamics of a thermodynamic system by contact vector fields
extended with inputs and outputs while the second one interprets the thermodynamic vector
field as a smooth section of the tangent bundle of the respective Legendre manifold parametrized
by n functions, called thermodynamic controls. It is shown that there is a duality between these
two approaches similar to the one found in the symplectic case. However, there are still many
open questions which present a waste opportunity for further research.
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1. INTRODUCTION

During the last decades there has been a constant interest
in developing the system-theoretic foundations of ther-
modynamics. A representation of thermodynamic systems
by stochastic models was first proposed in Brockett and
Willems (1979) and later developed in Sandberg et al.
(2011, 2014). Haddad et al. (2005) proposed a non-linear
compartmental model which exhibits many features typi-
cal for thermodynamic systems such as equipartition of en-
ergy and irreversibility phenomena. These ideas were later
extended (see Berg et al. (2013) and references therein).

One particularly interesting direction of research is based
on the use of the geometric structure of thermodynamic
state spaces. Within this framework, pioneered in Her-
mann (1973) and adopted in this contribution, the state
space of a thermodynamic system is associated with an
n-dimensional Legendre sub-manifold of the (2n + 1)-
dimensional contact space. Within this framework, we
are particularly interested in defining the dynamics of a
thermodynamic system.

There are two main approaches to the definition of thermo-
dynamic evolution. The first approach, following Mrugata
et al. (1991), consists in describing the dynamics of a ther-
modynamic system by contact vector fields extended with
inputs and outputs (see Eberard et al. (2007); Favache
et al. (2009)). This leads to the definition of port con-
tact systems which can be seen as a contact counterpart
of port Hamiltonian systems (van der Schaft, 2004). An
alternative approach, proposed in Gromov and Caines
(2011a,b), describes the thermodynamic vector field as a
smooth section of the tangent bundle of the respective
Legendre manifold parametrized by n functions, called
thermodynamic controls. Both frameworks allow describ-
ing interconnected thermodynamic systems and studying
their basic properties.
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Obviously, the coexistence of two different approaches
raises questions regarding their validity or the domain
of their applicability. This paper attempts to resolve this
issue. Apart from that, we hope to stimulate the discussion
on “what is the dynamics of a thermodynamic system?”

The paper is organized as follows. Section 2 gives a brief
overview of the necessary background. Section 3 describes
two approaches to the description of thermodynamic evo-
lution. A number of results related to these approaches
is presented in Sec. 4 while Sec. 5 outlines directions for
further research.

2. GEOMETRIC DESCRIPTION OF
THERMODYNAMICS

In this section, we present some basic facts regarding the
thermodynamic notation and conventions as well as the
geometric (contact) description of thermodynamic phase
space. For a more detailed treatment see Callen (1985);
Kondepudi and Prigogine (1998) for thermodynamics,
Geiges (2008); Arnold (1989) for contact geometry, and
Mrugata et al. (1991); Gromov and Caines (2015) for the
contact description of thermodynamics.

In the following, we will restrict ourselves to the study of
single phase, single component homogeneous thermody-
namic systems that do not undergo any chemical trans-
formations. Furthermore, when considering interactions
between thermodynamic systems we restrict ourselves to
the interactions accompanied by any form of energy or
matter transfer. Thus, we do not consider processes driven
by the elimination of constraints imposed on the system.

2.1 Reversible and irreversible quasi-static processes

The central postulate of equilibrium thermodynamics is
that the system is spatially homogeneous, i.e., each part
of the system has the same properties as any other. This
implies that the whole system can be described by a small
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number of state variables which completely characterize
the respective equilibrium state. Within this framework,
the system’s evolution is considered to be a temporally
ordered dense sequence of equilibrium states which the
system passes through at a sufficiently slow pace such that
the spatial inhomogeneities can be neglected. This class of
thermodynamic processes is referred to as quasi-static.

We can say that a thermodynamic system has infinite-
dimensional unmodeled drift dynamics. The system is in
an equilibrium state if this dynamics have settled down.
Quasi-static evolution would then mean that this infinite-
dimensional drift dynamics is sufficiently fast such that we
can neglect it and consider only the lumped response to
the control actions. Obviously, this drift dynamics must be
stable — this is referred to as the thermodynamic stability.

A quasi-static process evolves on the set of equilibrium
states which is assumed to be a smooth manifold em-
bedded in the space of state variables. Such manifold is
naturally called the equilibrium manifold.

There are two types of quasi-static processes: reversible
and irreversible ones. The notion of (ir)reversibility is
intimately related to the concept of time arrow which
says that any real life process can evolve only in the
direction characterized by the growth of the total entropy
of the system and its environment. A reversible process
does not increase the total entropy and is therefore an
idealization which sets a limit to the set of physically
realizable processes.

We note at this point that both reversible and irreversible
quasi-static processes obey the same rules. Thus the prop-
erty of the process to be reversible (resp. irreversible)
depends on the type of interaction occurring between the
system and its environment (or between two subsystems).
For instance, a frictionless mechanical process (e.g. suffi-
ciently slow compression of a gas by a frictionless piston)
does not increase the total entropy and is hence reversible.
On the other hand, any process involving heat transfer
at finite rate inevitably leads to the increase of the total
entropy and is therefore irreversible.

Some processes, however, cannot be described within the
quasi-static framework. One classical example is the ex-
pansion of a gas in an (otherwise isolated) evacuated cham-
ber. While the initial and the final states are well defined,
the intermediate states cannot be described by lumped
parameters. Using our geometrical picture, we can say that
the state disappears from one point on the equilibrium
manifold to appear at another one after some time. During
this transition the system’s entropy increases while energy
remains constant as the process is not accompanied by any
heat or work transfer.

2.2 Thermodynamic basics

In an equilibrium state, a thermodynamic system can be
completely described by a number of parameters. For the
considered class of systems the system’s state can be
described by four parameters: the internal energy U, the
entropy S, the volume V', and the mole number N. All these
are ertensive parameters, i.e. they satisfy the additivity
property. The state variables also satisfy the state equation

U =U(S,V,N). (1)

Note that U(S,V, N) is a smooth, positive homogeneous
function of order 1 which implies that it can be rewritten
using the Euler homogeneous function theorem:

U=TS§—pV + uN, (2)
where T, p, and p are the conjugate variables, T = g—g,
p= fg—g, and pu = g—][\],, called the temperature, the internal

pressure (note the minus sign), and the chemical potential,
respectively. These variables are intensive parameters, i.e.
they are invariant with respect to the partitioning of the
system (put differently, they are positive homogeneous
functions of order 0). Note that all intensive and extensive
variables take on only positive values.

Alternatively, instead of the energy representation of the
main relationship (1) one can use the entropy formulation

5 =S(U,V,N). (3)
It can be readily seen that the conjugate variables are now
(%3 L, —L). Along with jche energy and entropy represen-
tations of the state equation one often uses different state
equations obtained as partial Legendre transformations of
(1) yielding, e.g., the Gibbs energy, the enthalpy etc. or the
Legendre transformations of (3) resulting in the Massieu-
functions (see, e.g., (Callen, 1985, Ch. 5)).

Definition 1. An equilibrium energy manifold of a thermo-
dynamic system is defined as the graph U of the energy
function U(S,V, N). Correspondingly, an equilibrium en-
tropy manifold S is defined as the graph of the entropy
function S(U,V, N).

Remark 2. In the same way one can define equilibrium
manifolds corresponding to the different state functions.
Note though that while energy and entropy representa-
tions result in the same equilibrium manifold up to the per-
mutation of coordinates, the equilibrium manifolds derived
from other state functions are not directly comparable to
U or S because these are expressed in different coordinates
(both extensive and intensive variables). On the other
hand, these equilibrium manifolds represent the same sub-
stance. To unify all descriptions of a given thermodynamic
system, it proves to be helpful to lift the equilibrium
manifold into the higher-dimensional space of extensive
and intensive coordinates as described in Subsection 2.3.

The behavior of a thermodynamic system is governed by
the First and the Second Law of Thermodynamics (Callen
(1985); Kondepudi and Prigogine (1998)). The First Law
states that the infinitesimal variation of energy, dU, in a
thermodynamic process® can be written as

dU = AQ + AW + AC, (4)

where AQ, AW, AC are the path-dependent infinitesimal
quantities describing the amount of heat transferred to the
system, the work done on the system, and the change of
the internal energy due to the matter flow. In contrast
to the latter quantities, dU is path-independent and thus
is identified with the differential of the internal energy
function. For a quasi-static process (4) can be rewritten
in terms of state variables and their conjugates to yield

dU = TdS — pdV + udN. (5)

Of particular importance is the first term in the r.h.s. of
(5) which is addressed by the Second Law. It states that

1 This result holds true for any class of thermodynamic processes,
whether equilibrium or non-equilibrium ones.
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