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1. INTRODUCTION

One classical approach to study thermodynamics is
through contact geometry, as an analogue of symplectic
geometry for classical mechanics, reported for example in
(Hermann, 1973) and (Mrugala et al., 1991), but dating
back to the work by Gibbs and later, by Caratheodory. In
the context of control systems analysis and feedback design
for thermodynamic systems, contact geometry was consid-
ered, through a lift of a given control system, in (Eberard
et al., 2007), (Favache et al., 2009), (Favache et al., 2010),
(Ramirez et al., 2013), and more recently in (Wang et al.,
2015). Stability analysis and feedback stabilization prob-
lems were successfully addressed for control systems using
the contact geometry approach. As discussed in (Favache
et al., 2010), both the energy and entropy functions can
serve as the generating potential of the contact lift. The
aforementioned results are key to understand stability
and stabilization problems for thermodynamic systems:
By lifting the n-dimensional controlled dynamics to a
(2n + 1)-dimensional dynamical systems endowed with a
contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A related point of
view on admissible evolution criteria, developed indepen-
dently in (Hoang and Dochain, 2013), can be related to
the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
to study stability and stabilization problem, resides in the
construction of suitable Lyapunov stability arguments in
an extended phase space.

From a more general perspective, the contact geometric,
also known as the Thermodynamic Phase Space (TPS),
approach has its importance in the field of nonequilibrium
thermodynamics, relating classical thermodynamics and
dynamic systems far from equilibrium, see for example
the contribution proposed in (Grmela, 2002), built on

material from (Arnold, 1989), that shows that the ther-
modynamic reciprocity relations are encoded within this
framework. Contact geometry also serves as the basis for
the geometrothermodynamics approach to nonequilibrium
thermodynamics, see for example the original contribution
(Quevedo, 2007) and applications presented in (Quevedo
and Tapias, 2014), where the TPS is endowed with a
metric, in the spirit of Weinhold and Ruppeiner (Quevedo,
2007), i.e., by using the Hessian of the thermodynamic
potential as a metric. An indefinite Riemannian metric
was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
to study stability and stabilization problem, resides in the
construction of suitable Lyapunov stability arguments in
an extended phase space.

From a more general perspective, the contact geometric,
also known as the Thermodynamic Phase Space (TPS),
approach has its importance in the field of nonequilibrium
thermodynamics, relating classical thermodynamics and
dynamic systems far from equilibrium, see for example
the contribution proposed in (Grmela, 2002), built on

material from (Arnold, 1989), that shows that the ther-
modynamic reciprocity relations are encoded within this
framework. Contact geometry also serves as the basis for
the geometrothermodynamics approach to nonequilibrium
thermodynamics, see for example the original contribution
(Quevedo, 2007) and applications presented in (Quevedo
and Tapias, 2014), where the TPS is endowed with a
metric, in the spirit of Weinhold and Ruppeiner (Quevedo,
2007), i.e., by using the Hessian of the thermodynamic
potential as a metric. An indefinite Riemannian metric
was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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1. INTRODUCTION
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through contact geometry, as an analogue of symplectic
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(Hermann, 1973) and (Mrugala et al., 1991), but dating
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ered, through a lift of a given control system, in (Eberard
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and stabilization problems for thermodynamic systems:
By lifting the n-dimensional controlled dynamics to a
(2n + 1)-dimensional dynamical systems endowed with a
contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A related point of
view on admissible evolution criteria, developed indepen-
dently in (Hoang and Dochain, 2013), can be related to
the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
to study stability and stabilization problem, resides in the
construction of suitable Lyapunov stability arguments in
an extended phase space.

From a more general perspective, the contact geometric,
also known as the Thermodynamic Phase Space (TPS),
approach has its importance in the field of nonequilibrium
thermodynamics, relating classical thermodynamics and
dynamic systems far from equilibrium, see for example
the contribution proposed in (Grmela, 2002), built on
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the geometrothermodynamics approach to nonequilibrium
thermodynamics, see for example the original contribution
(Quevedo, 2007) and applications presented in (Quevedo
and Tapias, 2014), where the TPS is endowed with a
metric, in the spirit of Weinhold and Ruppeiner (Quevedo,
2007), i.e., by using the Hessian of the thermodynamic
potential as a metric. An indefinite Riemannian metric
was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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This note is organized as follows. Necessary background
on the TPS endowed with a metric is given in Section
2. In Section 3, the lift of controlled dynamical systems
and stability results from the literature are considered
using the metric on the TPS. An example is given in
Section 4. Conclusions and future areas for investigation
are discussed in Section 5.

2. BACKGROUND

We first briefly summarize the formalism of contact geom-
etry for thermodynamics. We follow the exposition given
in (Preston and Vargo, 2008), complemented by material
from the expositions in (Grmela, 2002) and (Ramirez et al.,
2013). A complete exposition of contact geometry can be
found in (Arnold, 1989) and (Libermann and Marle, 1987).

We denote the n extensive variables by xi, i = 1, . . . , n,
and the thermodynamical potential by x0, for example
the energy x0 = E(x) or the Entropy x0 = S(x). The
n intensive variables are denoted by pi and are dual
to the extensive variables by the relations pi = ∂E

∂xi or

pi = ∂S
∂xi , depending on the choice of thermodynamical

potential 1 . The thermodynamic phase space (TPS) is
the (2n + 1)-dimensional vector space endowed with the
canonical contact structure

θ = dx0 +

n∑
i=1

pidx
i.

Definition 1. A one-form θ on a 2n+1-dimensional mani-
fold T is a contact form if θ ∧ (dθ)n �= 0 is a volume form.
Then the pair (T , θ) is called a contact manifold.

For a given set of canonical coordinates and any partition I
and J of the set of indices {1, . . . , n}, for any differentiable
function φ(xI , pJ) of n variables, i ∈ I, j ∈ J , the formulas

x0 = φ−
∑
i∈I

pi
∂φ

∂pi

xi =− ∂φ

∂pi
, i ∈ I,

pj =
∂φ

∂xj
, j ∈ J, (1)

define a Legendre submanifold Σφ of R2n+1.

Let the function of chosen extensive variables F (x) be a
thermodynamical potential and let Σφ be the correspond-
ing Legendre submanifold defined by the relations (1). The
thermodynamic metric on the Legendre submanifold Σφ is
defined as

ηF = Hess (F )dx⊗ dx, (2)

with elements

1 Generally speaking, any thermodynamic potential could be used,
internal energy, entropy, Helmholtz free energy, or the Gibbs free
energy. Those representations are related by Legendre transforma-
tions (Callen, 1985). The proper choice of a potential depends on
the particular problem at hand. We do not make a particular choice
here and in the sequel, and the thermodynamic potential is denoted
by F (x).

(ηF )ij =
∂2F

∂xi∂xj
dxi ⊗ dxj . (3)

Historically, as related in (Quevedo, 2007) and (Preston
and Vargo, 2008), the Weinhold metric ηU corresponds
to the metric obtained when the chosen thermodynamical
potential is the internal energy U , while the choice of the
entropy leads to the Ruppeiner metric ηS . The choice of
a metric to study properties of contact manifold leads
to interesting investigations, for example: Compatibility;
Metric Invariance; Curvature properties; Symplectization.
Here, we focus on the used of a metric for stability studies
in the sense given by (Favache et al., 2009). As such, our
interest lies in the study of the dynamics of the contact
vector field associated with the contact structure (T , θ).

Definition 2. A vector field X on (T , θ) is a contact vector
field if and only if there exits a differentiable function ρ
such that

LX θ = ρθ. (4)

To every contact vector field X , one associates the function
K(x0,x,p), called the contact Hamiltonian. Conversely,
to every function K, there corresponds the contact vector
field XK given as

XK =

(
K −

n∑
i=1

pi
∂K

∂pi

)
∂

∂x0
+

∂K

∂x0

(
n∑

i=1

pi
∂

∂pi

)

+

n∑
j=1

(
∂K

∂xj

∂

∂pj
−

∂K

∂pj

∂

∂xj

)
. (5)

The corresponding dynamical system in the contact phase
space is given as

ẋ0 =K −
n∑

i=1

pi
∂K

∂pi

ẋi =−∂K

∂pi

ṗi = pi
∂K

∂x0
+

∂K

∂xi
. (6)

For a given controlled dynamical system

ẋ = f(x) + g(x)u,

with x ∈ Rn, a lift of a n-dimensional vector field to
the contact phase space was introduced in the context of
control irreversible systems in (Eberard et al., 2007), and
extended in the contributions (Favache et al., 2009, 2010;
Ramirez et al., 2013; Wang et al., 2015). In particular, in
(Ramirez et al., 2013), the drift part of the dynamics f(x)
was given by

ẋ = f

(
x,

∂U

∂x

)
,

and the contact lift was generated by the contact Hamil-
tonian function

K =

(
∂U

∂x
− p

)T

f

(
x,

∂U

∂x

)
.

The key argument to suggest such form of contact Hamil-
tonian is that a contact Hamiltonian defined this way
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