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Abstract: We consider and analyze properties of large sets of randomly selected (i.i.d.) points
in high dimensional spaces. In particular, we consider the problem of whether a single data point
that is randomly chosen from a finite set of points can be separated from the rest of the data
set by a linear hyperplane. We formulate and prove stochastic separation theorems, including:
1) with probability close to one a random point may be separated from a finite random set by a
linear functional; 2) with probability close to one for every point in a finite random set there is
a linear functional separating this point from the rest of the data. The total number of points in
the random sets are allowed to be exponentially large with respect to dimension. Various laws
governing distributions of points are considered, and explicit formulae for the probability of
separation are provided. These theorems reveal an interesting implication for machine learning
and data mining applications that deal with large data sets (big data) and high-dimensional data
(many attributes): simple linear decision rules and learning machines are surprisingly efficient
tools for separating and filtering out arbitrarily assigned points in large dimensions.
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1. INTRODUCTION

Curse of dimensionality is a widely known problem. The
term, originally introduced by R. Bellman in relation to
complications occurring in dynamic programming (Bell-
man, 1957), has now become a common name for issues of
both theoretical and computational nature arising in high
dimensions. An example of one particular issue is vastness
off high-dimensional spaces. Indeed, suppose that we were
to fill in a 100-dimensional unit cube with an extremely
coarse accuracy of just 2 measurements or samples per
each dimension. It turns out that we are highly unlikely
to complete this task due to that the amount of data one
would have to acquire and transmit is 2100 ≈ 1030. If we
partition this hypercube into a union of disjoint cubes with
the edge length equal to 1/2 and imagine this object as an
abstract storage in which each smaller hypercube is an
individual storage cell and use it to store data then almost
all of the 2100 pieces will remain empty for any dataset
currently available.

One the other hand, certain tasks become much simpler in
high dimensions. Statistical physics gives a great example
of such simplification. Existence of entropy in macroscopic
physics is a manifestation of the ensemble equivalence, that
is an essentially high-dimensional phenomenon (Gibbs,
1960 [1902]). In particular, equidistribution on a sphere
(microcanonical ensemble) in high dimensions is equivalent
to equidistribution in the corresponding ball inside the
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sphere and, at the same time, to the normal distribu-
tion (canonical distribution). The notions of order and
disorder and the possibility of order/disorder separation
appear also because of special multidimensional measure
concentration phenomena (Gorban, 2007).

Perhaps, the first mathematician who recognized both
beauty and utility of these phenomena (several decades
after Maxwell, Boltzmann, Gibbs and Einstein) was Paul
Lévy. He named them ‘concentration phenomena’ and
described them in detail in his seminal book (Lévy, 1951).
The first example was: concentration of the volume of a
ball near its surface (sphere). Let Vn(1) be a volume of a
unit ball in Rn. The volume of a ball of radius r in Rn

is rnVn(1). Hence, the volume of a ball of radius 1 − ε
is (1 − ε)nVn(1). For small ε, (1 − ε)n ≈ exp(−εn). The
fraction of the volume of the unit ball in the ε-vicinity of
the sphere is

1− (1− ε)n ≈ 1− exp(−εn). (1)

This fraction asymptotically approaches 1 when n → ∞.

Another important example is waist concentration: the
surface area of a high-dimensional sphere is concentrated
in a small vicinity of its equator (for general theory
see (Gromov, 2003)). Therefore, with probability close
to 1 two random vectors from an equidistribution on a
multidimensional sphere are almost orthogonal with cosine
of the angle between them close to zero. Moreover, n
such vectors in Rn with probability close to 1 form an
almost orthogonal basis. The number of pairwise almost
orthogonal vectors may be much bigger than the dimension
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The first example was: concentration of the volume of a
ball near its surface (sphere). Let Vn(1) be a volume of a
unit ball in Rn. The volume of a ball of radius r in Rn

is rnVn(1). Hence, the volume of a ball of radius 1 − ε
is (1 − ε)nVn(1). For small ε, (1 − ε)n ≈ exp(−εn). The
fraction of the volume of the unit ball in the ε-vicinity of
the sphere is

1− (1− ε)n ≈ 1− exp(−εn). (1)

This fraction asymptotically approaches 1 when n → ∞.

Another important example is waist concentration: the
surface area of a high-dimensional sphere is concentrated
in a small vicinity of its equator (for general theory
see (Gromov, 2003)). Therefore, with probability close
to 1 two random vectors from an equidistribution on a
multidimensional sphere are almost orthogonal with cosine
of the angle between them close to zero. Moreover, n
such vectors in Rn with probability close to 1 form an
almost orthogonal basis. The number of pairwise almost
orthogonal vectors may be much bigger than the dimension

2nd IFAC Workshop on
Thermodynamic Foundations of Mathematical Systems Theory
September 28-30, 2016. Vigo, Spain

Copyright © 2016 IFAC 79

The Blessing of Dimensionality: Separation
Theorems in the Thermodynamic Limit ⋆

Alexander N. Gorban ∗ Ivan Yu. Tyukin ∗∗ Ilya Romanenko ∗∗∗

∗ University of Leicester, Department of Mathematics, UK (e-mail:
ag153@le.ac.uk).

∗∗ University of Leicester, Department of Mathematics, UK (e-mail:
I.Tyukin@le.ac.uk)

∗∗∗ Apical LTD, UK (e-mail: ilya@apical.co.uk)

Abstract: We consider and analyze properties of large sets of randomly selected (i.i.d.) points
in high dimensional spaces. In particular, we consider the problem of whether a single data point
that is randomly chosen from a finite set of points can be separated from the rest of the data
set by a linear hyperplane. We formulate and prove stochastic separation theorems, including:
1) with probability close to one a random point may be separated from a finite random set by a
linear functional; 2) with probability close to one for every point in a finite random set there is
a linear functional separating this point from the rest of the data. The total number of points in
the random sets are allowed to be exponentially large with respect to dimension. Various laws
governing distributions of points are considered, and explicit formulae for the probability of
separation are provided. These theorems reveal an interesting implication for machine learning
and data mining applications that deal with large data sets (big data) and high-dimensional data
(many attributes): simple linear decision rules and learning machines are surprisingly efficient
tools for separating and filtering out arbitrarily assigned points in large dimensions.

Keywords: Measure concentration, separation theorems, big data, machine learning.

1. INTRODUCTION

Curse of dimensionality is a widely known problem. The
term, originally introduced by R. Bellman in relation to
complications occurring in dynamic programming (Bell-
man, 1957), has now become a common name for issues of
both theoretical and computational nature arising in high
dimensions. An example of one particular issue is vastness
off high-dimensional spaces. Indeed, suppose that we were
to fill in a 100-dimensional unit cube with an extremely
coarse accuracy of just 2 measurements or samples per
each dimension. It turns out that we are highly unlikely
to complete this task due to that the amount of data one
would have to acquire and transmit is 2100 ≈ 1030. If we
partition this hypercube into a union of disjoint cubes with
the edge length equal to 1/2 and imagine this object as an
abstract storage in which each smaller hypercube is an
individual storage cell and use it to store data then almost
all of the 2100 pieces will remain empty for any dataset
currently available.

One the other hand, certain tasks become much simpler in
high dimensions. Statistical physics gives a great example
of such simplification. Existence of entropy in macroscopic
physics is a manifestation of the ensemble equivalence, that
is an essentially high-dimensional phenomenon (Gibbs,
1960 [1902]). In particular, equidistribution on a sphere
(microcanonical ensemble) in high dimensions is equivalent
to equidistribution in the corresponding ball inside the

⋆ The work is partially supported by Innovate UK, Technology
Strategy Board, Knowledge Transfer Partnership grant KTP009890

sphere and, at the same time, to the normal distribu-
tion (canonical distribution). The notions of order and
disorder and the possibility of order/disorder separation
appear also because of special multidimensional measure
concentration phenomena (Gorban, 2007).

Perhaps, the first mathematician who recognized both
beauty and utility of these phenomena (several decades
after Maxwell, Boltzmann, Gibbs and Einstein) was Paul
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concentration phenomena (Gorban, 2007).

Perhaps, the first mathematician who recognized both
beauty and utility of these phenomena (several decades
after Maxwell, Boltzmann, Gibbs and Einstein) was Paul
Lévy. He named them ‘concentration phenomena’ and
described them in detail in his seminal book (Lévy, 1951).
The first example was: concentration of the volume of a
ball near its surface (sphere). Let Vn(1) be a volume of a
unit ball in Rn. The volume of a ball of radius r in Rn

is rnVn(1). Hence, the volume of a ball of radius 1 − ε
is (1 − ε)nVn(1). For small ε, (1 − ε)n ≈ exp(−εn). The
fraction of the volume of the unit ball in the ε-vicinity of
the sphere is

1− (1− ε)n ≈ 1− exp(−εn). (1)

This fraction asymptotically approaches 1 when n → ∞.

Another important example is waist concentration: the
surface area of a high-dimensional sphere is concentrated
in a small vicinity of its equator (for general theory
see (Gromov, 2003)). Therefore, with probability close
to 1 two random vectors from an equidistribution on a
multidimensional sphere are almost orthogonal with cosine
of the angle between them close to zero. Moreover, n
such vectors in Rn with probability close to 1 form an
almost orthogonal basis. The number of pairwise almost
orthogonal vectors may be much bigger than the dimension
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set by a linear hyperplane. We formulate and prove stochastic separation theorems, including:
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a linear functional separating this point from the rest of the data. The total number of points in
the random sets are allowed to be exponentially large with respect to dimension. Various laws
governing distributions of points are considered, and explicit formulae for the probability of
separation are provided. These theorems reveal an interesting implication for machine learning
and data mining applications that deal with large data sets (big data) and high-dimensional data
(many attributes): simple linear decision rules and learning machines are surprisingly efficient
tools for separating and filtering out arbitrarily assigned points in large dimensions.

Keywords: Measure concentration, separation theorems, big data, machine learning.

1. INTRODUCTION

Curse of dimensionality is a widely known problem. The
term, originally introduced by R. Bellman in relation to
complications occurring in dynamic programming (Bell-
man, 1957), has now become a common name for issues of
both theoretical and computational nature arising in high
dimensions. An example of one particular issue is vastness
off high-dimensional spaces. Indeed, suppose that we were
to fill in a 100-dimensional unit cube with an extremely
coarse accuracy of just 2 measurements or samples per
each dimension. It turns out that we are highly unlikely
to complete this task due to that the amount of data one
would have to acquire and transmit is 2100 ≈ 1030. If we
partition this hypercube into a union of disjoint cubes with
the edge length equal to 1/2 and imagine this object as an
abstract storage in which each smaller hypercube is an
individual storage cell and use it to store data then almost
all of the 2100 pieces will remain empty for any dataset
currently available.

One the other hand, certain tasks become much simpler in
high dimensions. Statistical physics gives a great example
of such simplification. Existence of entropy in macroscopic
physics is a manifestation of the ensemble equivalence, that
is an essentially high-dimensional phenomenon (Gibbs,
1960 [1902]). In particular, equidistribution on a sphere
(microcanonical ensemble) in high dimensions is equivalent
to equidistribution in the corresponding ball inside the
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This fraction asymptotically approaches 1 when n → ∞.

Another important example is waist concentration: the
surface area of a high-dimensional sphere is concentrated
in a small vicinity of its equator (for general theory
see (Gromov, 2003)). Therefore, with probability close
to 1 two random vectors from an equidistribution on a
multidimensional sphere are almost orthogonal with cosine
of the angle between them close to zero. Moreover, n
such vectors in Rn with probability close to 1 form an
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n. In particular, it has been shown in (Gorban et al., 2016)
that if one randomly chooses M ≤ Nn vectors on an n-
dimensional sphere, where the bound Nn is dependent on
the dimension n, then with probability close to 1 they all
are pairwise almost orthogonal. The value of Nn grows
exponentially with n. For these theorems, see (Gorban
et al., 2016). Existence of such almost orthogonal bases
was shown in (Kainen and Kurkova, 1993).

Other examples of concentration phenomena include (but
are not limited to) famous Johnson and Lindenstrauss
result (Johnson and Lindenstrauss, 1984), error bound in
machine learning (Vapnik, 2000), and function approxi-
mation (Pao et al., 1994), (Rahimi and Recht, 2008a),
(Rahimi and Recht, 2008b). This contribution aims to fur-
ther explore advantages offered by concentration phenom-
ena in machine learning and data analysis applications.

Here we consider the problem of what is the probability
that a point or a set of points are separable from a
given set, i.e. the data, by linear functionals and their
cascades. Notwithstanding the relevance of this problem
for machine learning, separation theorems are important
tools in convex geometry and functional analysis. The
famous Hahn-Banach separation theorem for real spaces
states that if L is a locally convex topological vector space
space, X is compact, and Y is closed set and X,Y are
convex, then there exists a continuous linear functional l
on V such that l(x) < t < s < l(y) for some real numbers
t, s and for all x ∈ X and y ∈ Y .

We formulate and prove the stochastic separation theorem
which demonstrates that in a high dimensional finite i.i.d.
sample with high probability every point can be linearly
separated from the set of all other points. The cardinality
of the sample for which the theorem holds is allowed to be
exponential in dimension. This and other results of our
present contribution reveal surprising and rather unex-
pected benefits offered by high-dimensionality to theory
and practice of high dimensional data mining. Of course,
high dimensionality of data may cause difficulties in analy-
sis of data, for example, in organization of similarity search
(Pestov, 2000). This is the curse of dimensionality. But at
the same time concentration phenomena may bring a range
of rewards too, including linear separability. We can call
this effect blessing of dimensionality (cf. (Anderson et al.,
2014), (Chen et al., 2013)).

NOTATION

Throughout the paper the following notational agreements
are used.

• R denotes the field of real numbers;
• N is the set of natural numbers;
• Rn stands for the n-dimensional linear space over

the field of reals; unless stated otherwise symbol n is
reserved to denote dimension of the underlying linear
space;

• let x ∈ Rn, then ∥x∥ is the Euclidean norm of x:

∥x∥ =
√
x2
1 + · · ·+ x2

n;
• Bn(R) denotes a n-ball of radius R centered at 0:

Bn(R) = {x ∈ Rn| ∥x∥ ≤ R};
• V(Ξ) is the Lebesgue volume of Ξ ⊂ Rn;
• M is an i.i.d. sample equidistributed in Bn(1);

• M is the number of points in M, or simply the
cardinality of the set M.

2. SEPARATION OF A POINT FROM A FINITE
RANDOM SET IN HIGH DIMENSIONS

Here and throughout the paper our basic example is an
equidistribution on the unit ball Bn(1) in Rn.

Definition 1. Let X and Y be subsets of Rn. We say that a
linear functional l on Rn separates X and Y if there exists
a t ∈ R such that

l(x) > t > l(y) ∀ x ∈ X, y ∈ Y.

Let M be an i.i.d. sample drawn from the equidistribution
on the unit ball Bn(1). We begin with evaluating the prob-
ability that a single element x randomly and independently
selected from the same equidistribution can be separated
from M by a linear functional. This probability, denoted
as P1(M, n), is estimated in the theorem below.

Theorem 2. Consider an equidistribution in a unit ball
Bn(1) in Rn, and let M be an i.i.d. sample from this
distribution. Then

P1(M, n) ≥ max
ε∈(0,1)

(1− (1− ε)n)

(
1− ρ(ε)n

2

)M

,

ρ(ε) = (1− (1− ε)2)
1
2

(2)

Proof of Theorem 2. The proof of the theorem is contained
mostly in the following lemma

Lemma 3. Let M be an i.i.d. sample from an equidistri-
bution on a unit ball Bn(1). Let x ∈ Rn be a point inside
the ball with 1 > ∥x∥ > 1− ε > 0. Then

P

(
y ∈ M

����
⟨

x

∥x∥
, y

⟩
< 1− ε

)
≥ 1− ρ(ε)n

2
. (3)

Proof of Lemma 3. Recall that (Lévy, 1951): V(Bn(r)) =
rnV(Bn(1)) for all n ∈ N r > 0. The point x is inside the
spherical cap Cn(ε):

Cn(ε) = Bn(1) ∩
{
ξ ∈ Rn

����
⟨

x

∥x∥
, ξ

⟩
> 1− ε

}
. (4)

The volume of this cap can be estimated from above (see
Fig. 1) as

V(Cn(ε)) ≤
1

2
V(Bn(1))ρ(ε)

n. (5)

The probability that the point y ∈ M is outside of Cn(ε)
is equal to 1 − V(Cn(ε))/V(Bn(1)). Estimate (3) now
immediately follows from (5). �
Let us now return to the proof of the theorem. If x is
selected independently from the equidistribution on Bn(1)
then the probabilities that x = 0 or that it is on the
boundary of the ball are 0. Let x ̸= 0 be in the interior
of Bn(1). According to Lemma 3, the probability that a
linear functional l separates x from a point y ∈ M is
larger than 1 − 1/2ρ(ε)n. Given that points of the set M
are i.i.d. in accordance to the equidistribution on Bn(1),
the probability that l separates x from M is no smaller
than (1− 1/2ρ(ε)n)M .

On the other hand

P (x ∈ Bn(1)|1 > ∥x∥ > 1− ε) = (1− (1− ε)n).

Given that x and y ∈ M are independently drawn from
the same equidistribution and that the probabilities of
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